
2 Mathematical Foundations: Part I

2.1 Probabilistic Model

We first consider an experiment of which there are n possible outcomes, ω1, ω2, . . . , ωn. We

call ω1, ω2, . . . , ωn sample points, and the set Ω = {ω1, ω2, . . . , ωn} the sample space. For

example, for a single toss of a coin, Ω = {H,T}, where H denotes that the coin lands heads

up and T denotes that the coin lands tails up. For a single toss of a die, Ω = {1, 2, 3, 4, 5, 6},

and for n tosses of a die, Ω = {ω : ω = (a1, a2, . . . , an), ai = 1, 2, 3, 4, 5 or 6}. In this example,

there are 6n sample points in the sample space.

In each of the above settings, a probabilistic model may assign a probability to each

sample point. For example, in the experiment of a single toss of a die, if the die is fair, we

may assign a probability of 1/6 to each of the sample points in Ω = {1, 2, 3, 4, 5, 6}. That

is, if we define p(ω) to be the probability of ω, then our probability model is p(1) = p(2) =

p(3) = p(4) = p(5) = p(6) = 1/6. In principle, we may assign any non-negative numbers to

the six sample points as their probabilities, as long as these numbers sum up to one. We

make the particular assignment above to reflect our assumption that the die is fair. (This is

what we mean by “a model”.)

With such an assignment of probabilities, we may calculate the probability of any event.

An event is denoted by a subset of the sample space. For example, A = {3, 4} corresponds to

the event that “3 or 4 is facing up in tossing a die”, and this event happens with probability

P(A) = p(3) + p(4) = 1/3. The subset B = {2, 4, 6} corresponds to the event that “an even

number is facing up in tossing a die”, and it has probability P(B) = p(2)+p(4)+p(6) = 1/2.

We may be able to construct “new” events from “old” events. For example, if A and B are

two events, then AC denotes that A does not happen, A∩B denotes that A and B happens

at the same time, and A ∪ B denotes that either A or B happens. We may calculate their

probabilities easily. For example, P(AC) = P({1, 2, 5, 6}) = p(1) + p(2) + p(5) + p(6) = 2/3.

Such assignments of probabilities are intuitive and convenient. However, difficulties arise
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when the experiment (or the sample space) becomes complex. Consider an infinite inde-

pendent tosses of a fair coin. If we label heads-up as 1 and tails-up as 0, the sample space

becomes

Ω = {ω : ω = (a1, a2, a3, . . .), ai = 0 or 1}.

How many points are there in Ω? It is well known that every real number in [0, 1) has a

unique binary expansion of the form 0.b1b2b3 . . ., where bi = 0 or 1. As a result, there is a

one-to-one mapping between points in Ω and points in [0, 1)1. That is, there are as many

points in Ω as in [0, 1), and we may simply take Ω as [0, 1), and take our experiment as

choosing a number randomly from [0, 1).

If we continue to assign probabilities to each point in [0, 1), since each point should

have the same probability, and these probabilities have to sum up to one, we must assign a

probability of zero to each of the points in [0, 1). However, such an assignment does not lead

to very far. For example, it is not clear how to obtain P([0, 1/2)) from the assignment that

each single point has probability zero, although intuitively, we know that the probability

should be 1/2.

Given the fact that we don’t know how to calculate the probability of an event from

the probabilities of sample points but we may still “know” the probability of that event,

why don’t we assign probabilities directly to the events instead of to the sample points? Of

course, any such assignment should be consistent in some sense. For example, a smaller set

should be assigned a probability no greater than a larger set that contains the smaller set,

and the assigned probability for the union of two disjoint sets should equal to the sum of

the assigned probability for the two individual sets. This is the idea behind the axiomatic

formulation of probability theory following Kolmogorov.

1Strictly speaking, the mapping from Ω to [0, 1) is not exactly one-to-one but instead surjective. For
example, 1/2 = 0.1000 . . . = 0.0111 . . .. That is, we may find two points in Ω that corresponds to the same
number in [0, 1). However, this does not affect the main message we would like to deliver. See Billingsley
(1995).

8



2.2 Probability Spaces

To construct a model for an experiment, we need three ingredients: the sample space, the

events, and the probabilities assigned to the events. The sample space Ω usually depends on

the design of the experiment, and we should know it immediately after we understand what

the experiment is. From the section above, we know that we may express an event simply

as a subset A of Ω. The question is, which subsets of Ω should be included in the system

of events so that the resulting probability model becomes useful and convenient to describe

probabilistic phenomena in the real world? From the discussion in the previous section, we

know that if A is an event, it is better that AC , which denotes that the event A does not

happen, is an event. Moreover, if A and B are events, it is better that A∩B, denoting that

A and B happen at the same time, and A ∪ B, denoting that either A or B happens, are

also events. This motivates the following definition.

Definition 2.1. Let Ω be a nonempty set. A system A of subsets of Ω is called an algebra

if it satisfies the following conditions:

1. Ω ∈ A.

2. If A ∈ A, then AC ∈ A.

3. If A ∈ A and B ∈ A, then A ∪B ∈ A.

We note here that 2 and 3 together implies that if A ∈ A and B ∈ A, then A ∩B ∈ A.

Now we may take sets in an algebra A as events, and start to assign probabilities to

these events. We may have different ways to assign numbers in different models, but any

reasonable assignment P should make a probabilistic sense in that

1. if A ∈ A, then P(A) ≥ 0,

2. P(Ω) = 1, and

3. if A ∈ A and B ∈ A are disjoint, then P(A ∪B) = P(A) + P(B).

Note that P may be viewed as a set function from A to R. A set function satisfying the

above three conditions is called a finitely additive probability measure.
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Now we have all the three ingredients and we may start to define a probabilistic model

(in the extended sense).

Definition 2.2. A probabilistic model (in the extended sense), is an ordered triple (Ω,A,P)

where

1. Ω is a nonempty set,

2. A is an algebra of subsets of Ω, and

3. P is a finitely additive probability measure on A.

It turns out that this model is too broad to lead to a fruitful theory. Instead, we need to

restrict both the class of subsets of Ω and the class of set functions P we consider.

Definition 2.3. A system F of subsets of Ω is a σ-algebra if it satisfies the following

conditions:

1. Ω ∈ F .

2. If A ∈ F , then AC ∈ F .

3. If A1, A2, . . . ∈ F , then
⋃∞

i=1 Ai ∈ F .

If A ∈ F , then A is called F -measurable.

Definition 2.4. Let Ω be a nonempty set and F a σ-algebra of subsets of Ω. A set function

P : F → R is a probability measure if it satisfies the following conditions:

1. If A ∈ A, then P(A) ≥ 0.

2. P(Ω) = 1.

3. If A1, A2, . . . ∈ A are disjoint, then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

If a set function µ has only the properties 1 and 3, it is called a measure.

Definition 2.5. A probabilistic model, or a probability space, is an ordered triple (Ω,F ,P)

where
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1. Ω is a nonempty set,

2. F is a σ-algebra of subsets of Ω, and

3. P is a probability measure on F .

2.3 Remarks on σ-algebras

In this section we make some remarks about σ-algebras. Given a sample space Ω, a σ-

algebra on it could be very simple, containing only two sets, or it could be very complicated,

containing more sets than we could handle. For example, if Ω = R, the simplest σ-algebra

on Ω is the collection of sets {∅,R}. However, this σ-algebra is too small to generate any

useful results. On the other end, the collection of all subsets of R is a σ-algebra. It turns

out that this σ-algebra is so large that it is difficult to define “lengths” for all sets in this

σ-algebra in a consistent way. So a lot of times we want to keep a balance. That is, we want

to construct σ-algebras that contain certain sets, or in the language of probability, events,

that we care about, while keeping the σ-algebra small enough so that it is easy to work with.

This motivates us to define the concept of generated σ-algebra.

Definition 2.6. Let Ω be a nonempty set and E a collection of subsets of Ω. The smallest

σ-algebra that contains E , denoted by σ(E), is called the σ-algebra generated by E .

In the above definition, “smallest” means that σ(E) is contained in any σ-algebra that

contains E . In other words, it is the intersection of all σ-algebras that contain E . It is easy

to show that this intersection is indeed a σ-algebra.

There is a very useful σ-algebra on R, called the Borel σ-algebra, that is generated by

all open subsets of R. We usually denote this σ-algebra by B(R). A Borel-measurable set

is called a Borel set. It is easy to show that B(R) contains the singletons {a}, a ∈ R and

all sets of the forms (a, b), [a, b], (a, b], [a, b), (−∞, a), (−∞, a], (a,∞), [a,∞). Of course, it

contains much more sets that the ones specified above. Actually, the Borel σ-algebra suffices

most of our purposes, and it is not easy to think of a set that is not Borel.
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There is a special measure on (R,B(R)), called the Lebesgue measure, that has the

interpretation of “length”. We define a set function λ such that for any set of the form

(a, b], λ((a, b]) = b − a. Now that λ measures the length of the sets of the form (a, b]. It is

well known that these sets generate the σ-algebra B(R), and the set function λ extends in

a unique way to a measure on B(R) in the sense that the extension now 1) is a set function

defined for all sets in B(R), 2) gives the length for the sets of the form (a, b], and 3) is

a measure that satisfies the conditions in the definition above. This measure is called the

Lebesgue measure on (R,B(R)) and is denoted also by λ.

2.4 Random Variables

Intuitively, a “random” variable is a variable whose value is not deterministic. But how to

formally model such a variable? Think about a gamble whose return depends on the result

of tossing a die. Suppose the rule of the game is the following. First toss a die. If an odd

number is facing up, you get one dollar. If an even number is facing up, you lose one dollar.

Then your return of playing this game is a “random” variable. We know that we could write

the sample space as Ω = {1, 2, 3, 4, 5, 6}. Let X be your return of playing the game. Then

it is tempting to write something like

X(ω = 1) = 1,

X(ω = 2) = −1,

X(ω = 3) = 1,

X(ω = 4) = −1,

X(ω = 5) = 1,

X(ω = 6) = −1.

We see that actually we may view the random variable X simply as a function from the

sample space Ω to R. Now the question is, can an arbitrary function from the sample space
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to R be regarded as a random variable? It turns out that for a theory of probability to be

useful, we need to restrict the functions we consider a little bit. Think about the following

question: what is the probability of earning one dollar in the game? To be able to get

the probability, we need to figure out the event, which is defined to be a subset of Ω, that

corresponds to the result of earning one dollar in the game. Obviously, the event is given

by X−1({1}) = {1, 3, 5}. To be able to talk about the probability of the event, according

to the construction of probabilistic models in the previous section, we need to require that

the set {1, 3, 5}, which is X−1({1}), to be in the σ-algebra F if (Ω,F ,P) is the probability

space corresponding to the game.

Now consider a general random variable X : Ω→ R with the underlying probability space

(Ω,F ,P). As we mentioned above, most of the time the Borel sets suffice our purposes. So

the question we always asks is, what is the probability of X taking values in a Borel set B?

The corresponding event is X−1(B) = {ω ∈ Ω : X(ω) ∈ B}. To be able to talk about the

probability of this event X−1(B), we need X−1(B) ∈ F .

Now things become clear. A random variable should be defined as a special kind of

function.

Definition 2.7. Let f be a function from a set Ω to R, and let F be a σ-algebra correspond-

ing to Ω. The function f is called F -measurable (or simply measurable if the underlying

σ-algebra is clear from the context) if f−1(B) ∈ F for all B ∈ B(R).

Definition 2.8. Let (Ω,F ,P) be a probability space. A random variable is a real function

on Ω that is F -measurable.

Defining random variables as measurable functions has the advantage in terms of integra-

tion, which we shall introduce soon in a later section. Here we first look at the probability

distribution of a random variable X on (R,B(R)).

To motivate, we still take the example of the game above. We know that we may construct
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the probability space for the experiment of tossing a die as a triple (Ω,F ,P) where

Ω = {1, 2, 3, 4, 5, 6},

F = σ({1}, {2}, {3}, {4}, {5}, {6}),

and

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) =
1

6
.

Now we consider the distribution of the values of X on (R,B(R)). We know that the gambler

earns one dollar with probability 1/2, earns negative one dollars with probability 1/2, and

earns other amounts with probability zero. Therefore, we have a new probability measure

PX on (R,B(R)) given by

PX({x}) =


1/2, if x = 1

1/2, if x = −1

0, otherwise.

Now we have a new probability space (R,B(R),PX) induced by X. The probability

measure PX on (R,B(R)) with

PX(B) = P{X ∈ B}, B ∈ B(R)

is called the probability distribution of X on (R,B(R)). The function

FX(x) = P({X ≤ x}) = PX((−∞, x]), x ∈ R

is called the (accumulative) distribution function of X. It is easy to see that FX is a non-
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decreasing, right continuous function with left limits. Also, we have limx→−∞ F (x) = 0 and

limx→∞ F (x) = 1.

Let X be a random variable and g : R → R be a measurable function. Then g(X) is a

random variable. (Try to show this by yourself.)

Let X and Y be random variables. Then X + Y,X − Y,XY and X/Y are random

variables (provided that no indeterminate forms such as ∞−∞,∞/∞, a/0 appear. )

Let (Ω,F ,P) be a probability space and X1, X2, . . . , Xn be random variables. If we stack

these random variables together, we get a random vector (X1, X2, . . . , Xn)′. We may view

a random vector as a measurable mapping from (Ω,F ,P) to Rn with the Borel σ-algebra

B(Rk) generated by all open subsets of Rk.

Let {Xi}i∈I be a set of random variables. We say that the set of random variables are

(mutually) independent if for every finite set of indices i1, i2, . . . , in the random variables

Xi1 , Xi2 , . . . , Xin are independent, i.e.,

P(Xi1 ∈ B1, Xi2 ∈ B2, . . . , Xin ∈ Bn) = P(Xi1 ∈ B1)P(Xi2 ∈ B2) · · ·P(Xin ∈ Bn),

B1, B2, . . . , Bn ∈ F .

2.5 Lebesgue Integral and Mathematical Expectation

Let (Ω,F ,P) be a probability space. We may define the expectation of a random variable

as the Lebesgue integral of X with respect to the probability measure P. We first consider

a simple case when X can be written as

X(ω) =
n∑

i=1

xiIAi
(ω)
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where for any A ∈ F , IA is the indicator function taking values either zero or one:

IA(ω) =


1, if ω ∈ A,

0, otherwise.

We call such random variables simple. Now we define the expectation of a simple random

variable X to be

EX =
n∑

i=1

xiP(Ai).

Now for any non-negative random variable X, it is well known that there exists a sequence

of simple random variables {Xn} such that Xn(ω) → X(ω) for all ω ∈ Ω. Then we define

the expectation of X by

EX = lim
n→∞

EXn.

We may show that the limit on the right hand side above is independent of the choice of the

sequence {Xn}. Note that it is possible that EX =∞.

For a general random variable X, we can decompose it as

X = X+ −X−

where X+ = max(X, 0), and X− = −min(X, 0). Since both X+ and X− are non-negative

random variables, we define their expectations as above and define the expectation of X as

EX = EX+ − EX−

if at least one of EX+ and EX− is finite. The expectation EX is also called the Lebesgue inte-

gral ofX with respect to the probability measure P, and is denoted
∫

Ω
XdP, or

∫
Ω
X(ω)P(dω).

We say that X is integrable if both EX+ and EX− are finite.

The expectation has the following properties.
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1. If X and Y are non-negative random variables, or if E |X| <∞ and E |Y | <∞, then

E(X + Y ) = EX + EY .

2. If EX exists and c is a constant, then E(cX) = cEX.

In fact, we may define the Lebesgue integral for any measurable function with respect to

any measure in a similar way by first defining the integral for piecewise constant functions,

then for non-negative measurable functions, and then for a general measurable function.

Of course, when we talk about the expectation of a random variable, we always mean its

expectation with respect to a probability measure.

Now we may compare the Lebesgue integral to the Riemann integral. Recall that the

Riemann integral is defined as the limit of the Riemann sum: one partitions the domain

of the function, form the rectangles, and calculate the area of the rectangles. One then

make the partition finer and finer, and get a sequence of areas. If the limit of the sequence

converges, we define it as the Riemann integral. On the other hand, intuitively the Lebesgue

integral partitions the range of the function, and the rest are the same. The advantage of

partitioning in this new way is that now we are able to define integral for a much larger class

of functions. The Riemann integral only works for piecewisely continuous functions, while

Lebesgue integral could work for functions that are no where continuous. Another important

advantage is that for Riemann integrals, we can only exchange the integral sign and the limit

sign under restrictive conditions (for example, uniform convergence). For Lebesgue integral,

the exchange of the integral sign and the limit sign is possible under very mild conditions.

Theorem 2.9 (On Monotone Convergence). Let X, Y,X1, X2, . . . be random variables such

that Xn > Y for all n ≥ 1,EY > −∞, and Xn ↑ X. Then

lim
n→∞

EXn = E
(

lim
n→∞

Xn

)
= EX.

Theorem 2.10 (Lebesgue’s Dominated Convergence). Let X,X1, X2, . . . be random vari-
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ables such that |Xn| < Y for all n ≥ 1,EY <∞, and limn→∞Xn = X. Then

lim
n→∞

EXn = E
(

lim
n→∞

Xn

)
= EX.

The following inequality (Markov Inequality) is a direct consequence of the definition of

the Lebesgue integral.

Theorem 2.11. Let X be a random variable. Then for any ε > 0 and for any integer n ≥ 1,

we have

P(|X| ≥ ε) ≤ E |X|n

εn
.

The most famous special case is the Chebyshev Inequality:

Corollary 2.12. Let X be a random variable, then for any ε > 0

P(|X − EX| ≥ ε) ≤ E(X − EX)2

ε2
.

Note that from introductory probability, E(X−EX)2 is defined as the variance of X. So

the probability that a random variable taking values far away from its mean is bounded by

the random variable’s variance.
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