
4 The Predictability of Asset Returns: Part I

4.1 The Efficient Market Hypothesis (EMH)

Asset price predictability is perhaps the earliest and most discussed topic in financial econo-

metrics. This topic is very important since it could reveal information on how the financial

market works, and could lead to potential profits. Of course, the predictability depends

on what information the person who carries out the prediction has. Someone who knows a

company well may give a preciser forecast to the future price of the company’s stock than

someone who has never heard of the company. If the person can make a preciser prediction

than the market average, there is a chance of superior profits. It could also be possible

that the price “reveals” or “represents” information so well that no one is able to make a

prediction that is more “correct” than others and therefore generate superior profits. At

least starting from the very beginning of the 20th century, people began to think about the

problem of market efficiency.

• Samuelson (1965): “In competitive markets there is a buyer for every seller. If one

could be sure that a price will rise, it would have already risen.”

“...This means that there is no way of making an expected profit by extrapolating

past changes in the futures prices, by chart or any other esoteric devices of magic or

mathematics. The market quotation Y (T, t) already contains in itself all that can be

known about the future and in that sense has discounted future contingencies as much

as is humanly possible.”

• Fama (1970): “...In general terms, the ideal is a market in which prices provide accurate

signals for resource allocation: that is, a market in which firms can make production-

investment decisions, and investors can choose among the securities that represent

ownership of firms’ activities under the assumption that security prices at any time

‘fully reflect’ all available information. A market in which prices always fully reflect’
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available information is called ’efficient’.”

• Malkiel (1992): “...Formally, the market is said to be efficient with respect to some

information set... if security prices would be unaffected by revealing that information to

all participants. Moreover, efficiency with respect to an information set... implies that

it is impossible to make economic profits by trading on the basis of [that information

set].”

• Malkiel (2003): “It was generally believed that securities markets were extremely effi-

cient in reflecting information about individual stocks and about the stock market as

a whole. The accepted view was that when information arises, the news spreads very

quickly and is incorporated into the prices of securities without delay. Thus, neither

technical analysis, which is the study of past stock prices in an attempt to predict

future prices, nor even fundamental analysis, which is the analysis of financial infor-

mation such as company earnings and asset values to help investors select undervalued

stocks, would enable an investor to achieve returns greater than those that could be

obtained by holding a randomly selected portfolio of individual stocks, at least not

with comparable risk.”

“...I will use as a definition of efficient financial markets that such markets do not allow

investors to earn above-average returns without accepting above-average risks.”

When one talks about market efficiency, one has to be clear about what information set

he or she has in mind. In the finance literature, there are three commonly used information

sets, and three corresponding market efficiency.

• Week form market efficiency: the market is efficient with respect to the history of

prices/returns.

• Semi-strong form market efficiency: the market is efficient with respect to all publicly

available information.
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• Strong form market efficiency: the market is efficient with respect to all publicly avail-

able and private information.

Note that the meaning of “efficiency” here is not the same as the meaning of “efficiency”

in Welfare Economics. A consequence of market efficiency with respect to some information

set is that given that information set, there is no chance that one could make a superior

return without knowing more. As a consequence, one way to test market efficiency is to see

whether one can find a trading strategy that could generate superior profits.

However, we make some remarks here. First, inefficiency does not necessarily lead to

superior profitability; There are frictions in the financial markets that could prevent prof-

itability that comes from market inefficiency. For example, it could be that the superior

returns are too small to offset the transaction costs.

Second, when one is talking about superior returns, there must be some “normal” return

that plays the role of a benchmark. One has to be careful when defining what the normal

returns are. For example, the normal return for different risks are different.

In practice, people usually test the weak form of EMH by looking at whether one can

generate superior returns by studying past stock prices. People test the semi-strong form of

EMH by looking at whether one can generate superior returns by studying past stock prices

as well as company earnings and asset values. People test strong form EMH by looking

at investment performances of professional such as common fund managers, assuming that

these professionals have more information than publicly available.

4.2 Return Predictability

In this section we try to formulate the market efficiency hypothesis. Let (Ω,F ,P) be the

underlying probability space and Gt,Ht be sub-σ-algebras (of F) representing different in-

formation sets at time t. Suppose the equilibrium price of an asset, generated from a data

generating process(DGP), is P ∗t at time t. If one possess information Gt at time t, (and if

(s)he correctly understands the true DGP of the equilibrium price), his(her) best guess for
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the equilibrium price (or the true value of the asset) is E(P ∗t |Gt).

Let the actual market price be Pt. If his(her) guess is smaller than the actual price,

then (s)he would believe that the asset is overpriced. If his(her) guess is greater than the

actual price, (s)he would believe that the asset is underpriced. In either case, (s)he would

want to arbitrage by longing or shorting the asset. The market is efficient with respect to

the information set Gt means that based on the information set and the above calculation,

any investor is not able to make a profit based on the difference between the conditional

distribution of Pt given Gt and the distribution of E(P ∗t |Gt).

Here we consider a necessary condition: if the market is efficient with respect to the

information set Gt, then any investor is not able to make a profit based on the difference

between the market price Pt and his(her) best guess of the equilibrium price E(P ∗t |Gt) on

average. That is,

E
(
Pt − E(P ∗t |Gt)

∣∣∣∣Gt) = 0.

EMH formulated in this way satisfies the following properties.

• If the actual price is the equilibrium price, the market is efficient with respect to any

information set: E (P ∗t − E(P ∗t |Gt)|Gt) = 0 for any Gt.

• If the actual price “fully reflects” the information set Gt, i.e., Pt = E(P ∗t |Gt), the market

is efficient with respect to Gt:

E
(
E(P ∗t |Gt)− E(P ∗t |Gt)

∣∣∣∣Gt) = 0.

• If the market is efficient with respect to Gt, then it is efficient with respect to a smaller

information set Ht ⊂ Gt. That is, if E (Pt − E(P ∗t |Gt)|Gt) = 0, then

E
(
Pt − E(P ∗t |Ht)

∣∣∣∣Ht

)
= E

(
E
(
Pt − E(P ∗t |Gt)

∣∣Gt) ∣∣∣∣Ht

)
= 0.

This means that if the market is efficient with respect to the information set Gt and
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you have less information than Gt, then you are not able to make a profit on average

based on your limited information.

• If the market is efficient with respect to Gt, then it may be not efficient with respect

to a larger information set Ht ⊃ Gt. For example, if the actual price only “reflect” the

information Gt, i.e., Pt = E(P ∗t |Gt), then

E
(
Pt − E(P ∗t |Ht)

∣∣∣∣Ht

)
= E(P ∗t |Gt)− E(P ∗t |Ht)

in general is not zero (for example, if P ∗t is Gt-measurable but not Ht-measurable).

This means that if the market is efficient with respect to the information set Gt and

you hold extra information, then it is possible that you make a profit on average out

of the extra information you hold.

Here we make some remarks. First, testing the market efficiency relies on a model for

E(P ∗t |Gt). Therefore, what is tested is a mixture of the EMH, the model, and the equilibrium.

Second, the zero (conditional) expected profit condition is only one implication of the efficient

market hypothesis. The EMH could have other implications on the (conditional) distribution

of the superior returns. Third, the above formulation could also be applied essentially in the

same way to the logged prices lnPt, the simple return Rt, or the log return rt.

At this moment, we only consider the case in which the information set Gt consists

of only the past prices (or returns if we choose to model the returns). That is, we are

considering the test of the weak form of EMH. In a discrete time setting, this means that

Gt = σ(Pt−1, Pt−2, . . .). For notation convenience, since σ(Pt−1, Pt−2, . . .) involves only prices

up to time t− 1, we write σ(Pt, Pt−1, . . .) = Ft−1.
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4.3 The Martingale Hypothesis

If our model for the conditional mean asserts that

E(P ∗t |Ft−1) = Pt−1,

then the EMH can be formulated as

E(Pt − Pt−1|Ft−1) = 0.

It follows that

E(Pt|Ft−1) = Pt−1.

The above equation shows that the sequence of prices {Pt} is a martingale with respect to

the filtration {Ft} (an increasing sequence of σ-algebras).

Definition 4.1. Let X1, X2, . . . be a sequence of random variables on a probability space

(Ω,F ,P), and let F1,F2, . . . be a sequence of sub-σ-algebras such that Ft ⊂ Ft+1 for all t.

If Xn is Fn-measurable, E |Xn| <∞, and

E(Xt|Ft−1) = Xt−1 a.s.,

then the sequence {(Xt,Ft)} is called a martingale. We may also say that {Xt} is a mar-

tingale with respect to the filtration {Ft}. When the underlying filtration is clear from the

context, we may simply say that {Xt} is a martingale.

If we replace the equality in the above definition by

E(Xt|Ft−1) > Xt−1 a.s.,
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then {(Xt,Ft)} is called a sub-martingale. If the equality is replaced by

E(Xt|Ft−1) < Xt−1 a.s.,

then {(Xt,Ft)} is called a super-martingale.

Suppose that {Yt} is a sequence of random variables and {Ft} is an increasing sequence

of sub-σ-algebras. Then {(Yt,Ft)} is called a martingale difference sequence if

E(Yt|Ft−1) = 0 a.s..

A martingale difference sequence {(Yt,Ft)} may be viewed as the sequence of the differ-

ences of some martingale, as its name suggests. To see this, Let Xt = Y0 + Y1 + . . .+ Yt. It

is easy to see that Yt = Xt −Xt−1 and {(Xt,Ft)} is a martingale.

Now according to our model for the conditional mean of the asset value, the EMH is

equivalent to that {(Pt,Ft)} is a martingale. Or we may write Pt = Pt−1 +εt, then {(εt,Ft)}

is a martingale difference sequence. We may show that

EPt = EPt−1 = . . .EP0

and

Eεt = Eεt−1 = . . .Eε0 = 0.

4.4 The Variance Ratio Tests

4.4.1 The Basic Test

A popular procedure to test the martingale hypothesis is first proposed by Lo and MacKinlay

(1999, Chapter 2). The test is proposed under a stronger hypothesis:

H0 : εt ∼ iid (0, σ2).
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The test is constructed as follows. Suppose that we obtain 2n+1 observations P0, P1, . . . , P2n.

We may obtain two variances

σ̂2
a =

1

2n

2n∑
t=1

(Pt − Pt−1)2

and

σ̂2
b =

1

2n

n∑
k=1

(P2k − P2k−2)
2.

We construct two test statistics:

Jd = σ̂2
b − σ̂2

a

and

Jr =
σ̂2
b

σ̂2
a

− 1.

We have the following result.

Theorem 4.2. Under the null hypothesis H0, the asymptotic distributions of Jd and Jr are

given by
√
nJd →d N(0, σ4)

and
√
nJr →d N(0, 1)

as n→∞.

Note that the parameter σ4, which is unknown, appears in the asymptotic distribution of

Jd. This is called a nuisance parameter. The asymptotic distribution of Jr is free of nuisance

parameters and therefore Jr is usually preferred.

Proof. Note that both test statistics are functions of σ̂2
a and σ̂2

b . So we first obtain the

34



asymptotic distribution of (σ̂2
a, σ̂

2
b )
′ jointly. Write

σ̂2
a =

1

2n

n∑
k=1

(ε22k−1 + ε22k),

and

σ̂2
b =

1

2n

n∑
k=1

(ε2k−1 + ε2k)
2.

Then σ̂2
a

σ̂2
b

 =
1

2n

n∑
k=1

 ε22k−1 + ε22k

(ε2k−1 + ε2k)
2

 .
Since {εt} is an iid sequence, {(ε22k−1 + ε22k, (ε2k−1 + ε2k)

2)′} is an iid sequence of random

vectors. We therefore may use the central limit theorem for an iid sequence to obtain the

asymptotic distribution of (σ̂2
a, σ̂

2
b )
′.

It is easy to see that

E

 ε22k−1 + ε22k

(ε2k−1 + ε2k)
2

 =

2σ2

2σ2

 .
After some tedious calculations, one may show that

Var


 ε22k−1 + ε22k

(ε2k−1 + ε2k)
2


 =

2A− 2σ4 2A− 2σ4

2A− 2σ4 2A+ 2σ4

 ,
where A = Eε41. Therefore, by CLT,

√
n


σ̂2

a

σ̂2
b

−
σ2

σ2


→d N

0,

A−σ4

2
A−σ4

2

A−σ4

2
A+σ4

2


 .

Now we may write Jd = h1(σ̂
2
a, σ̂

2
b ) and Jr = h2(σ̂

2
a, σ̂

2
b ) where h1(x1, x2) = x2 − x1 and

h2(x1, x2) = x2
x1
−1. We introduce the so called Delta-method: Suppose that β̂ is an estimator
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for β ∈ Rn and
√
n(β̂ − β)→d N(0, D).

If h : Rn → R is a function that is differentiable at β, then

√
n(h(β̂)− h(β))→d N(0,∇hT (β)D∇h(β)).

Now we apply the Delta-method to Jd = h1(σ̂
2
a, σ̂

2
b ) and Jr = h2(σ̂

2
a, σ̂

2
b ). We have

√
n(Jd − 0)→d N

0,

[
−1 1

]A−σ4

2
A−σ4

2

A−σ4

2
A+σ4

2


−1

1


 = N(0, σ4),

√
n(Jr − 0)→d N

0,

[
− 1
σ2

1
σ2

]A−σ4

2
A−σ4

2

A−σ4

2
A+σ4

2


− 1

σ2

1
σ2


 = N(0, 1).

Now we know that ex ante Jr is distributed normally with mean zero and variance one

when n is large. (The statistic Jr is a random variable!) Once we observe a particular

realization of the sequence of prices {Pt}, we may use the observed value to calculate the

realized value of Jr, say c. (The realized value is a real number!) Now we may calculate

the (asymptotic) probability P(|
√
nJr| ≥ c) of getting a realization of Jr that is equal to or

larger than c in absolute value. This probability is the p-value of the test for the observed

data.

4.4.2 The VR test in the Presence of a Drift Term

In this section we consider the case when E(P ∗t |Ft−1) = µ+Pt−1, i.e., when the price follows

Pt = µ+ Pt−1 + εt
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where εt ∼ iid(0, σ2) and µ is a constant. This formulation for stock price is more practical

since the additional drift term µ may reflect the effect from inflation. In order to conduct a

variance ratio test for εt, we need to first estimate µ. To estimate µ, we notice that

Pt − Pt−1 = µ+ εt

and

Eεt = 0.

Therefore, a good estimator of µ is given by

µ̂ =
1

2n

2n∑
t=1

(Pt − Pt−1) =
1

2n
(P2n − P0).

Now we may redefine σ̂2
a and σ̂2

b respectively as

σ̂2
a =

1

2n

2n∑
t=1

(Pt − Pt−1 − µ̂)2,

and

σ̂2
b =

1

2n

n∑
k=1

(P2k − P2k−2 − 2µ̂)2.

Now we define Jd and Jr as in the previous section. It can be shown that the asymptotic

distribution of the two statistics remain unchanged. The intuition behind is that we may

write

σ̂2
a =

1

2n

2n∑
t=1

(Pt − Pt−1 − µ+ (µ− µ̂))2 =
1

2n

2n∑
t=1

(εt + (µ− µ̂))2

and

σ̂2
b =

1

2n

n∑
k=1

(P2k − P2k−2 − 2µ+ 2(µ− µ̂))2 =
1

2n

n∑
k=1

(ε2k+1 + ε2k + 2(µ− µ̂))2.
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Since µ̂ is a very good estimator of µ, i.e., µ − µ̂ is small enough, the introduction of the

term µ− µ̂ does not affect the asymptotic distributions of σ̂2
a and σ̂2

b .

4.4.3 A General VR test

When we construct σ̂2
b , instead of using the differences of every other observations, we may

use the differences of every qth observations. Suppose that we have nq + 1 observations

P0, P1, . . . , Pnq. Suppose that our null hypothesis is that Pt = µ+Pt−1+εt and εt ∼ iid(0, σ2).

We define

µ̂ =
1

nq
(Pnq − P0),

σ̂2
a =

1

nq

nq∑
t=1

(Pt − Pt−1 − µ̂)2,

σ̂2
b (q) =

1

nq

n∑
k=1

(Pqk − Pq(k−1) − qµ̂)2.

Just as before, we define

Jd(q) = σ̂2
b (q)− σ̂2

a

and

Jr(q) =
σ̂2
b (q)

σ̂2
a

− 1.

Using the same approach, we may show that under the null hypothesis, the asymptotic

distributions of the two statistics are given respectively by

√
nJd(q)→d N

(
0,

2(q − 1)

q
σ4

)

and
√
nJr(q)→d N

(
0,

2(q − 1)

q

)
.
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