
5 The Predictability of Asset Returns: Part II

5.1 Using Overlapping Differences

In this section we further modify our test to use overlapping q-th differences of Pt to estimate

the variance σ2 on the numerator. To be specific, we let µ̂ and σ̂2
a be defined as in the last

section. We define

σ̂2
c (q) =

1

nq2

nq∑
t=q

(Pt − Pt−q − qµ̂)2.

Now we define

Md(q) = σ̂2
c (q)− σ̂2

a

and

Mr(q) =
σ̂2
c (q)

σ̂2
a

− 1.

We may show that under the null hypothesis, the asymptotic distribution of the two

statistics above are given respectively by

√
nMd(q)→d N

(
0,

2(q − 1)(2q − 1)

3q2
σ4

)

and
√
nMr(q)→d N

(
0,

2(q − 1)(2q − 1)

3q2

)
.

The derivation of the limit distribution of the statistics Md(q) and Mr(q) is more com-

plicated than in the i.i.d. case in Theorem 4.2. It involves a central limit theorem for

q-dependent random variables. Interested readers may refer to the appendix of this chapter

for a sketch of the derivation.

A question is, why would we bother to make such an adjustment given that this adjust-

ment will make our derivation of the asymptotic behaviors of our test statistics harder? Lo

and MacKinlay (1999) claim that the modified statistics improve finite sample performance

of the corresponding tests.
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A further finite sample refinement is to use unbiased estimators for σ2. We define

σ̄2
a =

1

nq − 1

nq∑
t=1

(Pt − Pt−1 − µ̂)2,

σ̄2
c =

1

m

nq∑
t=q

(Pt − Pt−q − qµ̂)2,

m = q(nq − q + 1)

(
1− 1

n

)
,

and define

M̄d(q) = σ̄2
c (q)− σ̄2

a,

M̄r(q) =
σ̄2
c (q)

σ̄2
a(q)
− 1.

Since this unbiasedness modification is a very minor one, we may show that the limit dis-

tributions of
√
nM̄d(q) and

√
nM̄r(q) are the same as those of

√
nMd(q) and

√
nMr(q),

respectively.

5.2 Testing for Uncorrelated Increments

In the last section we test the martingale hypothesis

Pt = µ+ Pt−1 + εt, εt ∼ m.d.s.

by testing a stronger hypothesis

εt ∼ iid(0, σ2).

In this section, we replace the i.i.d. null hypothesis by a less strong one, namely the

uncorrelated increments hypothesis:

H0 : {εt} is strictly stationary and Eεtεs = 0 for all t 6= s.
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Definition 5.1. A sequence of random variables {Xt}t∈Z is called strictly stationary if the

distribution of (Xt1 , Xt2 , . . . , Xtn)′ is the same as the distribution of (Xt1+τ , Xt2+τ , . . . , Xtn+τ )
′

for any choice of t1, t2, . . . , tn and τ ∈ Z.

Any iid sequence of random variables is strictly stationary.

Suppose that {Xt} is a strictly stationary sequence of random variables. Then we have

that for any t, t1, t2 and τ ,

EXt = EXt+τ ,

and

Cov(Xt1 , Xt2) = Cov(Xt1+τ , Xt2+τ )

if they exist. We see that the expectation of Xt is the same for all t, and the covariance of

two random variables Xt1 , Xt2 only depends on the time difference t2 − t1. Therefore, we

define the autocovariance function of the sequence to be

γ(k) = Cov(Xt, Xt+k) = Cov(X1, X1+k).

We define the autocorrelation function of the sequence {Xt} by

ρ(k) =
Cov(Xt, Xt+k)

Var(Xt)
=
γ(k)

γ(0)
.

It is easy to see that γ(k) = γ(−k) and ρ(k) = ρ(−k) for all k. If {Xt} is a sequence of

uncorrelated random variables, then γ(k) = 0 and ρ(k) = 0 for all k.

Let’s come back to our test. The test for our null hypothesis is based on the autocorrela-

tion function ρ(k). We need to estimate it first. Suppose we observe P0, P1, P2, . . . , PT . We

estimate ρ(k) through

µ̂ =
PT − P0

T
,

γ̂(k) =
1

T

T∑
t=k+1

(Pt − Pt−1 − µ̂)(Pt−k − Pt−k−1 − µ̂),
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and

ρ̂(k) =
γ̂(k)

γ̂(0)
.

Under the null hypothesis and some regularity conditions, we may show that

√
T ρ̂(k)→d N(0, 1)

as T →∞.

The estimator ρ̂(k) is a biased estimator. For small samples this bias could be large. A

bias-corrected version ρ̃(k) is therefore proposed:

ρ̃(k) = ρ̂(k) +
T − k

(T − 1)2
(1− ρ̂2(k)).

We may show that under the null hypothesis and some regularity conditions, we have

T√
T − k

ρ̃(k)→d N(0, 1).

5.3 The Q-Statistics

Each of the tests in the above section tests for the zero correlation for a particular k. However,

we know that under the null hypothesis the autocorrelations are zero for all k. Box and Pierce

(1970) proposed a Q-statistic that utilizes this fact:

Qm = T

m∑
k=1

ρ̂(k)2.

It can be shown that

Qm →d χ
2
m.

as T → ∞. That is, the Q-statistic converges in distribution to a chi-square distribution

with degree of freedom m.
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Ljung and Box (1978) provided a finite sample correction for the Q-statistic:

Q′m = T (T + 2)
m∑
k=1

ρ̂2(k)

T − k
.

This statistic also converges in distribution to χ2
m.

A robustified version of the Q-statistic can be found in Lobato et al. (2002). This modi-

fication is constructed by replacing ρ̂2(k) with ρ̃2(k) in the above Q-statistics where

ρ̃2(k) =
γ̂(k)2

τ̂(k)
,

τ̂j =
1

T − k

T∑
t=k+1

(Pt − Pt−1 − µ̂)2(Pt−k − Pt−k−1 − µ̂)2.

The limit distributions preserve.

5.4 Appendix: Deriving the Asymptotic Distribution of Mr(q)

We only provide a sketch here. We focus on Mr(q) since the derivation of the asymptotic

distribution of Md(q) is simpler. We follow the basic idea in the proof of Theorem 4.2.

The main difference is now we need to use a central limit theorem for strictly stationary

m-dependent sequences of random variables/vectors.

Theorem 5.2. Let {Xt} be a strictly stationary m-dependent sequence of random vectors

with mean zero and autocovariance function Γ(j), j = 0,±1,±2, . . .. If
∑
|j|≤m Γ(j) 6= 0,

then

1√
n

n∑
i=1

Xi →d N

0,
∑
|j|≤m

Γ(j)

 .

We may first assume that µ = 0 and later make an argument that the estimation of

µ does not affect the asymptotic distribution of our test statistics, just as in the previous
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chapter. The core part of the derivation is to obtain the limit distribution of

1√
(n− 1)q + 1

nq∑
k=q

Zk

where

Zk =

1
q
(εk−q+1 + εk−q+2 + . . .+ εk)

2 − σ2

ε2k − σ2


is mean zero.

Under the null hypothesis, it is easy to see that {Zk} is strictly stationary and q − 1-

dependent. Then we need to obtain the autocovariance function Γ(j) of Zk for |j| < q. We

have that

Γ(j) =

σ11(j) σ12(j)

σ21(j) σ22(j)


where

σ11(j) = Cov

(
(εk−q+1 + εk−q+2 + . . .+ εk)

2

q
,
(εk−q+1−j + εk−q+2−j + . . .+ εk−j)

2

q

)
=

1

q2
Cov

(
(ε1 + . . .+ εq)

2, (ε1+j + . . . εq+j)
2
)

=
1

q2

(
E(ε1 + . . .+ εq)

2(ε1+j + . . . εq+j)
2 − E(ε1 + . . .+ εq)

2E(ε1+j + . . . εq+j)
2

)

for 0 ≤ j < q, and σ11(−j) = σ11(j). Write

E(ε1 + . . .+ εq)
2(ε1+j + . . . εq+j)

2 =
∑

1≤i1≤q

∑
1≤i2≤q

∑
1+j≤i3≤q+j

∑
1+j≤i4≤q+j

Eεi1εi2εi3εi4

There are q2 terms in the sums on the right hand side of the above equation. Each of these

individual terms are non-zero only if they belong to the one of the following four categories:

1. i1 = i2 = i3 = i4. There are only q − j such terms. Each term is equal to Eε41. We

denote the fourth moment by A.
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2. i1 = i2 6= i3 = i4. There are q2 − (q − j) such terms. Each term is equal to σ4.

3. i1 = i3 6= i2 = i4. There are (q − j)(q − j − 1) such terms. Each term is equal to σ4.

4. i1 = i4 6= i2 = i3. There are (q − j)(q − j − 1) such terms. Each term is equal to σ4.

So in the end, we have

σ11(j) =
(q − j)(A− 3σ4) + 2(q − j)2σ4

q2

for all 0 ≤ j < q, and σ11(−j) = σ11(j).

Also, similar calculation shows that

σ12(j) = Cov

(
(εk−q+1 + εk−q+2 + . . .+ εk)

2

q
, ε2k−j

)

=


A−σ4

q
, if j ≥ 0

0, if j < 0,

and

σ21(j) = Cov

(
(εk−q+1−j + εk−q+2−j + . . .+ εk−j)

2

q
, ε2k

)

=


0 if j > 0

A−σ4

q
, if j ≤ 0.

In the end, it is easy to show that σ22(j) is A−σ4 if j = 0 and is 0 if j 6= 0. Some algebra

yields that ∑
|j|≤q−1

Γ(j) =

A− σ4 + 2(q−1)(2q−1)σ4

3q
A− σ4

A− σ4 A− σ4.


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That is, by the central limit theorem, we have

1√
(n− 1)q + 1

nq∑
k=q

Zk →d N

0,

A− σ4 + 2(q−1)(2q−1)σ4

3q
A− σ4

A− σ4 A− σ4


 .

The rest is to apply the Delta method, just as in the proof of Theorem 4.2.
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