
10 Multivariate Time Series Analysis

10.1 Introduction

In this section we look at modeling multiple time series together. This helps us to understand

the dependence structure among different assets and different financial markets.

Let rt = (r1t, r2t, . . . , rNt)
′ be a random vector of the returns (or log returns) of N assets

at time t. The series rt is called weakly stationary if its mean vector

µ = Ert

exists and is independent of time t, and its autocovariance function, which is defined by

Γ(k) = E(rt − µ)(rt−k − µ)′ = [Cov(rit, rj,t−k))]ij

exists, and is independent of time t. We define the lag-k autocorrelation between assets i

and j by

ρij(k) =
Cov(rit, rj,t−k)√

Var(rit)
√

Var(rj,t−k)
=

Γij(k)√
Γii(0)

√
Γjj(0)

and define the autocorrelation function of rt by

ρ(k) = [ρij(k)].

We may show that ρ(k) = D−1Γ(k)D−1, where D is the diagnonal matrix of the standard

deviations of the individual series. Also, we have Γ(−k) = Γ(k)′ and ρ(−k) = ρ(k)′.

The diagonal elements ρii(k) are the autocorrelation function of rit. The off-diagonal

elements ρij(0) measures the concurrent linear relationship between rit and rjt, and the

off-diagonal element ρij(k) measures the linear dependence of rit on the past value rj,t−k.

To estimate the autocorrelation function, we first estimate the autocovariance function
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by

Γ̂(k) =
1

T

T∑
t=k+1

(rt − µ̂)(rt−k − µ̂)′,

where µ̂ is the sample analogue estimator of the mean µ:

µ̂ =
1

T

T∑
t=1

rt.

Then the autocorrelation function could be estimated by

ρ̂(k) = D̂−1Γ̂(k)D̂−1

where D̂ is the diagonal matrix of the sample standard deviations of the component series.

Vector white noise is a time series of random vectors which is mean zero and serially

uncorrelated with a constant zero-order autocovariance. If εt is white noise with Cov(εt) = Σ,

then we write εt ∼WN(0,Σ).

10.2 Multivariate Portmanteau Tests

The univariate Ljung-Box Q-statistic could be generalized to the multivariate case. We

consider the null hypothesis

H0 : ρ(1) = ρ(2) = · · · = ρ(m) = 0

against the alternative

H1 : ρ(`) 6= 0 for some ` ∈ {1, 2, . . . ,m}.
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The test statistic is given by

Q(m) = T 2

m∑
k=1

1

T − k
tr(Γ̂(k)′Γ̂(0)−1Γ̂(k)Γ̂(0)−1).

Under the null hypothesis and some regularity conditions,

Q(m)→d χ
2
N2m

where N is the dimension of the random vector rt.

10.3 Vector Autoregressive Models

Just as in the univariate case, we may develop autoregressive models for multivariate time

series. The simplest vector autoregressive model is given by the VAR(1) model:

rt = φ0 + Φrt−1 + εt

where rt is an N -dimensional vector, Φ is an N × N matrix, and εt ∼ WN(0,Σ) is N -

dimensional white noise.

In the case when N = 2, we have

r1t = φ10 + Φ11r1,t−1 + Φ12r2,t−1 + ε1t,

r2t = φ20 + Φ21r1,t−1 + Φ22r2,t−1 + ε2t.

Based on the first equation, Φ12 is the linear dependence of r1t on r2,t−1 in the presence of

r1,t−1. Therefore, Φ12 may be interpreted as the conditional effect of r2,t−1 on r1t given r1,t−1.

Assuming that the solution to the VAR(1) model is weakly stationary. Taking expecta-
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tions on both sides and utilize the properties of weak stationarity, we obtain that

Ert = (I − Φ)−1φ0,

providing that I − Φ is invertible. And using this relationship, we may write our model as

rt − µ = Φ(rt−1 − µ) + εt.

We may iterate backwards the above equation and obtain

rt − µ = εt + Φεt−1 + Φ2εt−2 + · · · .

For the right hand side of the above equation to converge, we need all the eigenvalues of

the matrix Φ to be smaller than one in modulus. Actually, this condition is both necessary

and sufficient for the VAR(1) difference equation to have a weakly stationary solution which

does not depend on future innovations.

Similarly as in the univariate case, we may obtain the Yule-Walker equation for the

VAR(1) by right multiplying rt−k−µ′ on both side of the demeaned VAR(1) model and then

take expectations. We obtain

Γ(k) = ΦΓ(k − 1), k ≥ 1.

Consequently, we have

ρ(k) = Θρ(k − 1)

where Θ = D−1ΦD.

Now for a general VAR(p) model

rt = φ0 + Φ1rt−1 + Φ2rt−2 + · · ·+ Φprt−p + εt
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where εt ∼WN(0, σ2), if a solution to it is weakly stationary, then the mean of this solution

is given by

µ = Ert = (I − Φ1 − Φ2 − · · · − Φp)
−1φ0,

and the Yule-Walker equations are given by

Γ(k) = Φ1Γ(k − 1) + Φ2Γ(k − 2) + · · ·+ ΦpΓ(k − p)

for k > 0, or

ρ(k) = Θ1ρ(k − 1) + Θ2ρ(k − 2) + · · ·+ Θpρ(k − p),

where Θi = D−1ΦiD.

A VAR(p) model always has a VAR(1) representation:



rt − µ

rt−1 − µ
...

rt−p+1 − µ


=



Φ1 Φ2 · · · Φp−1 Φp

I 0 · · · 0 0

...
...

...
...

0 0 · · · I 0





rt−1 − µ

rt−2 − µ

· · ·

rt−p − µ


+



εt

0

...

0


.

For notation convenience, we write the above model as

xt = Ψxt−1 + ut,

where the meaning of xt, ut and Ψ should be clear from the context. We may use this repre-

sentation to derive properties of a VAR(p) model from the corresponding VAR(1) model. For

example, a necessary and sufficient condition for the VAR(p) model to have a unique weakly

stationary solution that does not depend on the future innovations is that the eigenvalues of

the matrix Ψ are all smaller than one in modulus. Some tedious algebra shows that this is
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also equivalent to that the roots of the equation

det(xp − xp−1Φ1 − xp−2Φ2 − · · · − xΦp−1 − Φp) = 0

lie inside the unit circle on the complex plane.

We may use OLS to estimate the VAR(p) model. To estimate, we write the model as

rt = Υx̃t + εt

where Υ = [φ0,Φ1,Φ2, . . . ,Φp] and x̃t = (1, r′t−1, r
′
t−2, . . . , r

′
t−p)

′. The OLS estimator of Υ is

given by

Υ̂ =

(
1

T

T∑
t=p+1

rtx̃
′
t

)(
1

T

T∑
t=p+1

x̃tx̃
′
t

)−1
.

We may estimate the residuals by

ε̂t = rt − φ̂0 − Φ̂1rt−1 − · · · − Φ̂prt−p

and estimate the covariance matrix of the innovations by

Σ̂ =
1

T

T∑
t=p+1

ε̂tε̂
′
t.

The AIC and BIC of the model are given respectively by

AIC = ln det(Σ̂) +
k2p

T

and

BIC = ln det(Σ̂) +
2k2p lnT

T
.

We may use AIC or BIC to choose the order p of the model.
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10.4 Impulse Response Analysis of VAR Models

A VAR(p) model could be written as a linear function of the past innovations:

rt = µ+ εt + A1εt−1 + A2εt−2 + · · · .

This is the moving-average representation of the VAR model. We could easily see that Ai is

the impact of the innovation εt−i on rt. Therefore, Ai, viewed as a function of the time lag

i, is called the impulse response function of rt.

However, since the components of εt are often correlated, the interpretation of elements

in Ai is not straightforward. Therefore, we use Cholesky decomposition to construct “struc-

tural” innovations such that the components in the innovations are uncorrelated. To be

specific, we may uniquely decompose Σ as

Σ = LL′

where L is a lower triangular matrix. We have that L−1ΣL−1 = I. Now we may write

rt = µ+
∞∑
i=1

Aiεt−i = µ+
∞∑
i=1

AiLL
−1εt−i = µ+

∞∑
i=1

Πiet−i

where Πi = AiL and et = L−1εt. It is easy to see that Var(et) = I. Therefore, we may

interpret [Πi]mn as the impulse of the m-th component of rt to one standard deviation

structural shock in the n-th component of rt−i.

10.5 Vector Moving-Average Models

Similarly, we have moving-average models for vector processes. A q-th order moving average

model, or VMA(q) for rt, is given by

rt = θ0 + εt + Θ1εt−1 + · · ·+ Θqεt−q,
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where εt ∼ WN(0,Σ). Similarly as in the univariate case, µ = Ert = θ0, and rt is always

weakly stationary as long as its covariance matrix is well defined.

Once again, this model could be estimated by maximum likelihood estimation, and it

should be not difficult to write down the likelihood function of rt − µ given that εt ∼

GWN(0,Σ). And we may choose the order q by the information criteria.

10.6 Vector Autoregressive Moving-Average Models

Just as in the univariate case, we may combine VAR and VMA to get VARMA model. A

general VARMA(p, q) model goes like this:

rt = φ0 + Φ1rt−1 + Φ2rt−2 + · · ·+ Φprt−p + εt + Θ1εt−1 + · · ·+ Θqεt−q.

However, new issues occur when we combine VAR and VMA. One of the most important

issues is the identifiability problem. The following is an example of two identical models

from Tsay (2010). The first VARMA(1, 1) model is

r1t
r2t

 =

0.8 −2

0 0


r1,t−1
r2,t−1

+

ε1t
ε2t

−
−0.5 0

0 0


ε1,t−1
ε2,t−1

 ,
and the second VARMA(1, 1) model is

r1t
r2t

 =

0.8 −2 + η

0 ω


r1,t−1
r2,t−1

+

ε1t
ε2t

−
−0.5 η

0 ω


ε1,t−1
ε2,t−1

 ,
It is easy to show that the two different VARMA models actually give the same data

generating process.

In most financial applications, VAR and VMA models are usually sufficient. Due to the

issues introduced above, VARMA models are not very popular.
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