
6 Linear Time Series Analysis: Part I

6.1 Introduction

Studies have suggested that many financial return series are serially correlated. In this

chapter, we look at a simple class of models that takes account of this correlation. To be

specific, we look at models that attempt to capture the linear relationship between return at

time t and information available prior to time t. Returns at different time in a series interact

through autocovariance or autocorrelation.

We have encountered the concepts of autocovariance and autocorrelation in the previous

chapter. There, we work with strictly stationary time series. Our framework in this chapter

could be developed for a larger class of time series, namely the weakly stationary time series.

Definition 6.1. A sequence of random variables {Xt}t∈Z is called weakly stationary if EXt =

EXt+τ and Cov(Xt1 , Xt2) = Cov(Xt1+τ , Xt2+τ ) for all t, t1, t2 and τ ∈ Z.

Similarly as in the case of strictly stationary time series, we may define the autocovariance

and autocorrelation functions for weakly stationary time series. These functions, again, are

only functions of the time difference of the two random variables considered. All properties

we introduced in the previous chapter for the autocovariance and autocorrelation functions

continue to hold.

We note here that neither strict stationarity nor weak stationarity implies each other.

For example, a strictly stationary time series may have infinite variance and therefore fails

to be weakly stationary. A weakly stationary time series may not be identically distributed

and therefore fails to be strictly stationary. However, if a time series is strictly stationary,

and at the same time has finite mean and variance, then it is weakly stationary.

There is a special class of weakly stationary time series that is widely used in multiple

disciplines.

Definition 6.2. A sequence of random variables {εt}t∈Z is called white noise if Eεt = 0 for
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all t, and

Cov(εt, εs) =


σ2, if t = s,

0, if t 6= s.

for some σ2 > 0.

We sometimes write εt ∼WN(0, σ2). If each εt is normally distributed, then this series is

called Gaussian white noise. Notice that terms in Gaussian white noise are not only serially

uncorrelated, but independent.

A time series {rt} is called linear if it can be written as

rt = µ+
∞∑
t=0

φiεt−i

where {εt} is white noise, µ, φ0, φ1, . . . are parameters and α0 = 1. Usually, εt represents

new information at time t and is therefore often referred to as the innovation at time t.

6.2 The Autoregressive Models

6.2.1 The AR(1) Model

The simplest model that utilizes the first order autocorrelation is the autoregressive (AR)

model of order one, or simply, the AR(1) model:

rt = α0 + α1rt−1 + εt (6.1)

where εt is white noise with variance σ2.

We first look at under what conditions {εt} is weakly stationary. Taking expectations on

both sides, we have

Ert = α0 + α1Ert−1.
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If {rt} is weakly stationary, we have Ert = Ert−1. This implies that

Ert =
α0

1− α1

:= µ.

We may rewrite our original model as

rt − µ = α1(rt−1 − µ) + εt. (6.2)

This gives us a difference equation. There are multiple solutions {rt} to this equation.

However, not all of them are weakly stationary.

Let us first try to solve it backwards. As a result,

rt − µ = εt + α1εt−1 + α2
1εt−2 + · · · =

∞∑
i=0

αi1εt−i.

For this solution to make sense, we need to guarantee that the series in the above expression

converges in some (probabilistic) sense. At this moment, we assume that this is the case.

Then rt−µ is a function of εt, εt−1, . . .. Similarly, we should have that rt−1−µ is a function

of εt−1, εt−2, . . .. This implies that E(rt−1−µ)εt = 0 since {εt} is white noise and thus serially

uncorrelated. Then we can take the variances of both sides of equation (6.2) and obtain

Var(rt − µ) = α2
1Var(rt−1 − µ) + Var(εt),

or equivalently,

Var(rt) = α2
1Var(rt−1) + σ2.

If {rt} is weakly stationary, then Var(rt) = Var(rt−1). Then we have

Var(rt) =
σ2

1− α2
1

.

49



In order for Var(rt) to be a variance, we need

|α1| < 1.

Otherwise, the variance is either infinity, or negative.

It turns out that if |α1| < 1, the series
∑∞

i=0 α
i
1εt−i converges almost surely. That is,

if our sample space is given by (Ω,F ,P), then the collection of sample points ω ∈ Ω such

that
∑∞

i=0 α
i
1εt−i(ω) does not converge has probability at most zero. That is,

∑∞
i=0 α

i
1εt−i

converges almost in all cases.

Now we have found a condition, namely |α1| < 1, such that (6.2) has a weakly stationary

solution, which is given by

rt = µ+
∞∑
i=0

αi1εt−i.

Actually, it could be proved that this is the only weakly stationary solution.

The case where |α1| = 1 is complicated. We shall consider this case in a later section.

In the case where |α1| > 1, the only weakly stationary solution is given by

rt = µt +
∞∑
i=0

(
1

α1

)i
εt+i.

However, in this case, the current value of rt depends on the future values of the innovations.

(Not even the expectations of future innovations!) This is something counter-intuitive, and

therefore we usually do not model financial time series in this way.

Now we assume that |α1| < 1. Multiply both sides of (6.2) by rt−k−µ for any k ≥ 1 and

take expectations, we get

E(rt − µ)(rt−k − µ) = α1E(rt−1 − µ)(rt−k − µ) + Eεt(rt−k − µ),

or

γ(k) = α1γ(k − 1), (6.3)
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or

ρ(k) = α1ρ(k − 1), (6.4)

where γ(k) and ρ(k) are the autocovariance and autocorrelation functions of the return series

{rt}. Using these relationships, starting from γ(0) and ρ(0), we can get γ(k) and ρ(k) for any

k. Equations (6.3) or (6.4) is usually called the Yule-Walker equation of the AR(1) process

(6.2).

6.2.2 The AR(p) Model

We may generalize our AR(1) model (6.1) so that {rt} is a p-th order autoregressive process:

rt = α0 + α1rt−1 + α2rt−2 + · · ·+ αprt−p + εt (6.5)

where {εt} is white noise with variance σ2.

It could be shown that a necessary and sufficient condition for the difference equation

(6.5) to have a weakly stationary solution that does not depend on the future values of {εt}

is that all the roots of the polynomial equation

xp − α2x
p−1 − α2x

p−2 − · · · − αp = 0

are smaller than one in modulus (or, all the roots lie in the unit circle on the complex plane).

We assume that this is the case.

When {rt} is weakly stationary, using similar techniques, we may show that

Ert =
α0

1− α1 − α2 − · · · − αp
.

With a slight abuse of notation, we denote the expectation again by µ. Then we may write

51



the AR(p) model (6.5) in its demeaned form:

rt − µ = α1(rt−1 − µ) + α2(rt−2 − µ) + . . .+ αp(rt−p − µ) + εt.

The Yule-Walker equation can be obtained by multiply both sides of the above equation

by rt−k − µ for some k ≥ 1 and then take expectations:

γ(k) = α1γ(k − 1) + α2γ(k − 2) + · · ·+ αpγ(k − p).

Together with the relationships γ(k) = γ(−k), one is able to obtain ρ(k) for all k.

6.3 Estimation of Autoregressive Models

Suppose that we have observations r1, r2, . . . , rT and have determined to model the series of

returns with an AR(p) model (6.5). We may estimate the model by ordinary least squares.

For notation convenience, let xt = (1, rt−1, rt−2, . . . , rt−p)
′ and β = (α0, α1, α2, . . . , αp)

′. Then

we may write our model as

rt = x′tβ + εt.

The OLS estimator of β is obtained by minimizing

L(β) =
1

Tp

T∑
t=p+1

(rt − x′tβ)2.

where Tp = T − p. The first order condition, which is a necessary condition, is given by

∂L(β)

∂β
= − 1

Tp

T∑
t=p+1

xt(rt − x′tβ) = 0.
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Solving the equation above, we obtain the OLS estimator of β:

β̂ =

(
1

Tp

T∑
t=p+1

xtx
′
t

)−1(
1

Tp

T∑
t=p+1

xtrt

)
.

The OLS estimator is well defined if and only if the matrix

Σ̂x =
1

Tp

T∑
t=p+1

xtx
′
t

is invertible. That is, Σ̂x is of full rank. This is usually the case in data since it is an

estimator of the variance of the random vector xt. As long as there is no multicollinearity

issue in xt, we shall see that Σ̂x is of full rank in practice.

The OLS estimator could also be viewed as a sample analogue estimator. To see this, we

multiply both sides of our model by xt and take expectations. Notice that εt is uncorrelated

with each of the terms in xt, we have that

Extrt = Extx′tβ.

If Extx′t is of full rank, we can solve for β:

β = (Extx′t)−1Extrt.

Notice that we may estimate Extx′t by its sample analogue estimator

1

Tp

T∑
t=p+1

xtx
′
t

and estimate Extrt by its sample analogue estimator

1

Tp

T∑
t=p+1

xtrt.
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Then β̂ could be viewed as the sample analogue estimator of β.

To obtain the asymptotic distribution of the OLS estimator β̂, write

√
Tp(β̂ − β) =

√
Tp

( 1

Tp

T∑
t=p+1

xtx
′
t

)−1(
1

Tp

T∑
t=p+1

xtrt

)
− β


=
√
Tp

( 1

Tp

T∑
t=p+1

xtx
′
t

)−1(
1

Tp

T∑
t=p+1

xt(x
′
tβ + εt)

)
− β


=

(
1

Tp

T∑
t=p+1

xtx
′
t

)−1(
1√
Tp

T∑
t=p+1

xtεt

)

= A−1B.

Under some regularity conditions, we have that a Law of Large Numbers holds for A:

A =
1

Tp

T∑
t=p+1

xtx
′
t →p Extx′t.

Let Ft = σ(εt, εt−1, εt−2, . . .). If {εt} is a martingale difference sequence (note that this is

stronger than serial uncorrelatedness), then E(xtεt|Ft−1) = xtE(εt|Ft) = 0. That is, {xtεt}

is a martingale difference sequence. Then under some regularity conditions, a Central Limit

Theorem holds for B:

B =
1√
Tp

T∑
t=p+1

xtεt →d N
(
0,Extx′tσ2

)
.

Then √
Tp(β̂ − β) = A−1B →d N

(
0, (Extx′t)−2Extx′tσ2

)
=d N

(
0, (Extx′t)−1σ2

)
.

The standard error of the estimates could be obtained as the square roots of the diagonal

elements of (Extx′t)−1σ2, which in turn could be estimated by

(
1

Tp

T∑
t=p+1

xtx
′
t

)−1
1

Tp

T∑
t=p+1

ε̂2t

54



where the ε̂t’s are the fitted residuals obtain through

ε̂t = rt − x′tβ̂.

Note that we have estimated σ2 using

σ̂2 =
1

Tp

T∑
t=p+1

ε̂2t .

We may also use the unbiased estimator for σ2 given by

1

T − 2p− 1

T∑
t=p+1

ε̂2t .

Asymptotically, they are equivalent.

6.4 Determining the Autoregressive Order

Before we start to estimate the model, we need to determine the autoregressive order p.

There are two popular approaches. One is to utilize the partial autocorrelation function,

and the other is to apply some information criteria.

6.4.1 Partial Autocorrelation Function

The lag-k partial autocorrelation function (PACF) of a weakly stationary time series mea-

sures the contribution of adding the term rt−k over an AR(k − 1) model. The lag-k PACF

could be estimated by the OLS estimator α̂kk of the AR(k) model

rt = αk0 + αk1rt−1 + · · ·+ αkkrt−k + εkt.

If the data is generated by an AR(p) model, α̂pp should not be zero, but α̂kk should be

close to zero for all k > p. Therefore, we may obtain α̂kk for k = 1, 2, . . . , P where P is some
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reasonably large number, and test whether the PACFs are zero.

It has been shown that under regularity conditions, for a weakly stationary Gaussian

AR(p) model, α̂pp →p αpp, while
√
T α̂kk →d N(0, 1) for k > p as T →∞.

6.4.2 Information Criteria

There are two popular information criteria for model selection: the Akaike information

criterion (AIC) and the Bayesian information criterion (BIC).

For a Gaussian AR(k) model, the AIC is defined to be

AIC(k) = ln σ̃2
k +

2k

T

where T is the sample size and

σ̃2
k =

1

T

T∑
t=1

ε̂2t .

The first term measures the goodness of fit of the model and the second term is a penalty

term which increase as the number of parameters increase. The rule is to first calculate

AIC(k) for k = 0, 1, . . . , P and then choose the k that minimizes the AIC.

The Bayesian information criteria uses a different penalty term:

BIC(k) = ln σ̃2
k +

k lnT

T
.

The selection rule is the same.

6.5 Forecasting

An important task in the study of financial time series is to make predictions. Suppose that

we have observations r1, r2, . . . , rT and we know that these observations are generated from

an AR(p) model (6.5). Now we want to predict rT+h for h ≥ 1. Suppose that {εt} is a

martingale difference sequence and Gt = σ(rt, rt−1, rt−2, . . .). Given GT , the “best” forecast
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we can make for rT+1 is its conditional expectation with respect to all available information,

namely GT . Notice that

rT+1 = α0 + α1rT + · · ·+ αprT−p+1 + εT+1,

we have

r̂T+1 = E(rT+1|GT ) = α0 + α1rT + α2rT−1 · · ·+ αprT−p+1.

In practice, we replace the αi’s using their estimated values.

Similarly, we have

r̂T+2 = E(rT+2|GT ) = α0 + α1r̂T+1 + α2rT + · · ·+ αprT−p+2.

We may repeat the above steps to get multi-step ahead forecasts.
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