
7 Linear Time Series Analysis: Part II

7.1 The Moving-Average Models

Another set of simple models frequently used in financial econometrics is the moving-average

(MA) models. We may model the return rt as an MA(q) process given by

rt = µ0 + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where εt ∼WN(0, σ2).

It is easy to see that

Ert = µ0,

and

Var(rt) = (1 + θ21 + θ22 + · · ·+ θ2q)σ
2.

Therefore, an MA(q) process is always weakly stationary.

It is also easy to obtain the autocorrelation function ρ(k) of any MA(q) process. We note

that for any MA(q) process, ρ(k) = 0 for all k > q. This is opposed to the AR cases. The

MA models are “finite-memory” models.

7.2 Estimation of Moving-Average Models

We usually use the maximum likelihood estimation (MLE) to estimate MA models. Suppose

that we observe r1, r2, . . . , rT . To obtain the likelihood function, we need to first impose some

assumptions on the distribution of the innovations. For the MA models, we usually assume

that the innovations are Gaussian, that is εt ∼ GWN(0, σ2).

We write

r = µ+ Aε
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where

r =



r1

r2
...

rT


,

µ =



µ0

µ0

...

µ0


,

ε =



ε1−q

ε2−q
...

εT


,

and

A =



θq θq−1 · · · θ1 1 0 · · · 0 0

0 θq θq−1 · · · θ1 1 · · · 0 0

0 0 θq θq−1 · · · θ1 · · · 0 0

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · θ1 1


.

Since the εt’s are Gaussian and uncorrelated, they are independent. Then ε is a jointly

normal random vector with mean zero and diagonal covariance matrix Σ = σ2I, where I is

a (T + q)× (T + q) identity matrix. The random vector, as a linear transformation of ε, is

also jointly normal, with mean µ and variance Ω = AΣA′. Now we are able to write down

the density function of r:

fr =
1

(2π)T/2 det(Ω)1/2
exp

(
−1

2
(r − µ)′Ω−1(r − µ)

)
.
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The likelihood function L(r; θ1, θ2, . . . , θq, µ, σ
2) of r, is the density fr viewed as a function

of the parameters θ1, θ2, . . . , θq, µ, σ
2:

L(r; θ1, θ2, . . . , θq, µ, σ
2) =

1

(2π)T/2 det(Ω)1/2
exp

(
−1

2
(r − µ)′Ω−1(r − µ)

)
.

The maximum likelihood estimator, is the values θ̂1, θ̂2, . . . , θ̂q, µ̂, σ̂
2 that maximizes the

likelihood function, or the log-likelihood function:

`(r; θ1, θ2, . . . , θq, µ, σ
2) = −T

2
ln 2π − 1

2
ln det(Ω)− 1

2
(r − µ)′Ω−1(r − µ).

For algorithms that computes the estimators using computers, see Hamilton (1994, Chapter

5).

7.3 Determining the Moving-Average Order

Since the autocorrelation function ρ(k) for an MA(q) process is zero for all k > q, we usually

use the sample autocorrelation function (ACF) to determine the order q of the MA model.

7.4 Forecasting

As an exercise, think about how you can forecast an MA(q) process given data r1, r2, . . . , rT .

7.5 The Autoregressive Moving-Average Models

We may combine the autoregressive models and the moving-average models to obtain the

autoregressive moving-average (ARMA) models. If we model the time series {rt} as an

ARMA(p, q) process, then

rt = α0 +

p∑
i=1

αirt−i + εt +

q∑
i=1

θiεt−i,
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where εt ∼WN(0, σ2).

For determinacy, we require that the two polynomial equations

xp − α1x
p−1 − · · · − αp−1x− αp = 0

and

xq + θ1x
q−1 + · · ·+ θq−1x+ θq = 0

do not have common roots. Otherwise, p and q could be reduced. And similarly as in the

AR models, a necessary and sufficient condition for an ARMA(p, q) model to have a unique

weakly stationary solution is that each of the roots of the polynomial equation

xp − α1x
p−1 − · · · − αp−1x− αp = 0

is less than one in modulus.

We usually use the maximum likelihood estimation to estimate weakly stationary ARMA

models. The simplest way to calculate the likelihood function of an ARMA process is through

the Kalman filter. We shall not go into detail here.

The PACF and ACF does not provide too much information for determining the orders

p and q in an ARMA(p, q) model. Actually the identification of the orders is a difficult

problem. In practice, information criteria such as AIC and BIC are often used to identify

the orders.

7.6 Unit Roots

We now turn to nonstationary time series. The simplest example of a nonstationary time

series is a random walk:

rt = rt−1 + εt

where εt ∼WN(0, σ2).
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It is obvious that a random walk process is not mean-reverting. It contains a stochastic

trend. And if we represent rt using only past innovations, we have

rt = εt + εt−1 + εt−2 + · · · .

Therefore, the effect of any innovation εt to rt is permanent: it not only affects rt, but will

continue to affect rt+1, rt+2, . . ..

Now we consider unit roots in a more general ARMA context. We know that the MA

part is always weakly stationary, while the weak stationarity of the AR part depends on the

modulus of the roots of the polynomial equation corresponding to the AR part. Suppose

that the AR polynomial equation has roots with modulus less than one, and also has roots

one. Now this difference equation does not have a weakly stationary solution. However, it

has a nonstationary solution that can be made weakly stationary by differencing. That is,

there is a solution {rt} such that {(1−L)d−1rt} is not weakly stationary but {(1−L)drt} is

weakly stationary for some positive integer d, where L is the lag operator defined by

Lrt = rt−1,

and

(1− L)d = (1− L)[(1− L)d−1].

Such a process is called an autoregressive integrated moving-average (ARIMA(p, d, q)) pro-

cess.

A common way to deal with such a process is to difference the original time series. If rt

is an ARIMA(p, d, q) process, then (1−L)drt is an ARMA(p, q) process. Therefore, once we

have a nonstationary process, we may try to difference it first, and then model it using an

ARMA(p, q) model.

Although there are processes in reality that are integrated of higher orders, most of the
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time the nonstationary time series we model in finance are integrated of order one. That is,

d = 1. For these time series, a first difference is enough. For example, prices {Pt} of financial

assets are usually believed to be nonstationary, while the log returns {lnPt − lnPt−1} are

modeled as weakly stationary. Here we mainly consider the case in which d = 1.

Before we start to model a time series, we need to test whether a time series contains a

unit root. We first look at a simple case. Suppose that we have a series r0, r1, . . . , rT that is

generated from

rt = rt−1 + εt,

where εt ∼WN(0, σ2). To detect nonstationarity in the series, we run the regression

rt = βrt−1 + εt

and test the null hypothesis H0 : β = 1 against the alternative H1 : |β| < 1. The OLS

estimator of β is given by

β̂ =

(
1

T

T∑
t=1

r2t−1

)−1(
1

T

T∑
t=1

rt−1rt

)
.

We have that

β̂ − 1 =

(
1

T

T∑
t=1

r2t−1

)−1(
1

T

T∑
t=1

rt−1εt

)
.

It is easy to see that if we treat r0 to be deterministic, we have that

Var(rt) = tσ2.

That is, the variance of rt is getting larger as t gets larger. As a consequence, we do not

have the usual LLN and CLT for

1

T

T∑
t=1

r2t−1
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and

1√
T

T∑
t=1

rt−1εt

respectively any more. Instead, we have

1

T 2

T∑
t=1

r2t−1 →d

∫ 1

0

W 2(r)dr,

1

T

T∑
t=1

r2t−1 →d

∫ 1

0

W (r)dW (r),

and

T (β̂ − β)→d

∫ 1

0
W (r)dW (r)∫ 1

0
W 2(r)dr

,

where W (r) is Brownian motion on [0, 1] with Var(W (1)) = σ2, and the second integral is

the Ito integral. Critical values of the asymptotic distribution could be obtained by Monte

Carlo simulations. We may also get the asymptotic distribution of the t-statistic:

t(β) =
β̂ − 1

s.e.(β̂)
→d

∫ 1

0
W (r)dW (r)(∫ 1

0
W 2(r)dr

)1/2 .
Note here that the convergence rate of the OLS estimator in this non-stationary case is

T , which is faster than the usual
√
T rate in the iid or the stationary case. And the limit

distribution is also different.

Now we consider a more general case. Suppose that

∆rt = α0 + α1∆rt−1 + α2∆rt−2 + · · ·+ αp∆rt−p + εt

where ∆ = 1−L is the difference operator, and εt ∼WN(0, σ2). We may run the regression

rt = α0 + βrt−1 + α1∆rt−1 + α2∆rt−2 + · · ·+ αp∆rt−p + εt
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and test the null hypothesis H0 : β = 1 against the alternative H1 : |β| < 1. It turns out

that the asymptotic distribution of the t-statistic for the OLS estimator of β is still given by

the Dickey-Fuller distribution:

t(β) =
β̂ − 1

s.e.(β̂)
→d

∫ 1

0
W (r)dW (r)(∫ 1

0
W 2(r)dr

)1/2 .
We may further generalize our setting to allow the error term to be serially correlated

instead of being a white noise. Interested readers may refer to Hamilton (1994, Chapter 17).

7.7 Trend and Seasonal Components

Besides stochastic trends that comes from unit roots, there could be deterministic trends

and seasonal components that makes the series non-stationary. In either case, we first need

to transform our series to stationary ones.

7.7.1 Deterministic Trends

If we know the form of the trend, we may use OLS to eliminate the trend component.

Suppose we want to study Yt and

Yt = mt +Xt

where Xt is a weakly stationary process and mt represents a deterministic trend. If we know

that mt = α0 + α1t, we may use OLS to estimate

Yt = α0 + α1t+ ut,

and recover Xt by

Yt − α̂0 − α̂1t

where α̂0 and α̂1 are the OLS estimated coefficients.
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In the above example, we could also do first differencing. Notice that ∆Yt = α1 + ∆Xt,

which is weakly stationary. However, we have to bear in mind that when we difference Yt, we

at the same time difference Xt, and information about Xt could be lost in this differencing

procedure.

Another way to estimate the trend component mt is to use two sided moving averages.

We may consider to estimate mt by

m̂t =

q∑
k=−q

wkYt+k

for some positive integer q and weights wk. For example, one may choose wk = 1
2q+1

for all

k. Then one may recover the stationary component Xt by Yt − m̂t.

7.7.2 Seasonality

Suppose we want to study Yt and

Yt = st +Xt

where Xt is a weakly stationary process and st is a seasonal component. One way to desea-

sonalize is to first estimate the seasonal component using season-wise means of the data and

then subtract the seasonal component from the series. For example, if you have data that is

at monthly frequency, you may estimate the January mean as the mean of all the January

observations, the February mean as the mean of all the February observations.

Another approach to eliminate the seasonal component is through differencing at lag-s

where s is the period. The lag-s difference operator ∆s is defined by

∆sYt = (1− Ls)Yt = Yt − Yt−s.

For example, if we have monthly data, s = 12. Note also that by lag-s differencing, we not

only eliminate the seasonal component, but also difference the stationary component {Xt},
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in which process information could be lost.
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