## 9 Factor Models

The main message of the CAPM is that the cross-sectional returns of assets can be solely explained by the betas. That is, if we know the betas, we can describe the cross-sectional returns on the assets as

$$
R_{i t}=\alpha_{i}+\beta_{i M} R_{M t}+\varepsilon_{i t}
$$

where $\alpha_{i}=\left(1-\beta_{i M}\right) R_{f}$. The above model could be viewed as a factor model, where $R_{M t}$ is the common factor, which is independent of the individual asset, but changes across time, and $\beta_{i M}$ is the factor loading, which is asset dependent, but is invariant over time.

It is quite natural to conject that there are more common factors that has explanatory power of the cross-sectional returns on assets. These factors could be macroeconomic fundamentals, firm or industry related factors, or even statistical factors.

### 9.1 Factor Models

A general form of the factor model for the return on asset $i$ at time $t$ is

$$
r_{i t}=\alpha_{i}+\beta_{i 1} f_{1 t}+\beta_{i 2} f_{2 t}+\cdots+\beta_{i m} f_{m t}+\varepsilon_{i t}
$$

where $\alpha_{i}$ represents the asset-specific intercept, $f_{j t}, j=1,2, \ldots, m$ are the $m$ common factors, $\beta_{i j}$ is the factor loading for asset $i$ on the $j$-th factor, and $\varepsilon_{i t}$ is the specific factor of asset $i$.

It is usually assumed that for financial asset returns, the factor $f_{t}=\left(f_{1 t}, f_{2 t}, \ldots, f_{m t}\right)^{\prime}$ is an $m$-dimensional weakly stationary process such that $\mathbb{E} f_{t}=\mu$, and $\operatorname{Cov}\left(f_{t}\right)=\Sigma$. We also assume that the specific factors $\varepsilon_{i t}$ is white noise, uncorrelated with the common factors, and uncorrelated with other specific factors. That is,

$$
\begin{gathered}
\mathbb{E} \varepsilon_{i t}=0 \\
\operatorname{Cov}\left(f_{j t}, \varepsilon_{i s}\right)=0
\end{gathered}
$$

and

$$
\operatorname{Cov}\left(\varepsilon_{i t}, \varepsilon_{j s}\right)= \begin{cases}\sigma_{i}^{2}, & \text { if } i=j \text { and } t=s \\ 0, & \text { otherwise }\end{cases}
$$

We may rewrite the model as

$$
\begin{equation*}
r_{t}=\alpha+\beta f_{t}+\varepsilon_{t} \tag{9.1}
\end{equation*}
$$

where $r_{t}=\left(r_{1 t}, r_{2 t}, \ldots, r_{N t}\right)^{\prime}, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)^{\prime}, \beta$ is a matrix whose $(i, j)$-th entry is $\beta_{i j}$, $f_{t}=\left(f_{1 t}, f_{2 t}, \ldots, f_{m t}\right)^{\prime}$, and $\varepsilon_{t}=\left(\varepsilon_{1 t}, \varepsilon_{2 t}, \ldots, \varepsilon_{N t}\right)^{\prime}$. We may further rewrite this model as

$$
r_{t}=\lambda F_{t}+\varepsilon_{t}
$$

where $\lambda=[\alpha, A]$, and $F_{t}=\left(1, f_{t}^{\prime}\right)^{\prime}$.
We may use the relationship

$$
\mathbb{E} r_{t} F_{t}^{\prime}=\lambda \mathbb{E} F_{t} F_{t}^{\prime}
$$

to identify

$$
\lambda=\left(\mathbb{E} F_{t} F_{t}^{\prime}\right)^{-1} \mathbb{E} r_{t} F_{t}^{\prime}
$$

If the factors are known, that is, if $F_{t}$ is known for each $t$, we may estimate the factor model by OLS. The OLS estimator of $\lambda$ is given by

$$
\hat{\lambda}=\left(\frac{1}{T} \sum_{t=1}^{T} F_{t} F_{t}^{\prime}\right)^{-1}\left(\frac{1}{T} \sum_{t=1}^{T} r_{t} F_{t}^{\prime}\right)
$$

### 9.2 Example: The Fama-French Three-Factor Model

Fama and French (1992) considered three factors in determining asset returns: the overall market return, the performance of small stocks relative to large stocks (small minus big, SMB), and the performance of value stocks relative to growth stocks (high minus low, HML).

### 9.3 Statistical Factors

It is also possible that we do not specify what the factors are but to extract factors statistically from the data. A statistical factor model is of the form

$$
r_{t}-\mu=\beta f_{t}+\varepsilon_{t}
$$

where $\mu$ is the mean of $r_{t}, \beta$ is the same as in (9.1), and $f_{t}$ is basically the factors in (9.1), but demeaned. Notice that in this model, we treat both $\beta$ and $f_{t}$ as unknown.

This model is not uniquely identified, because of that fact that $\beta f_{t}=(c \beta)\left(1 / c f_{t}\right)$ for any $c \neq 0$. We need to impose some restrictions on $f_{t}$ so that it is uniquely identified:

$$
\mathbb{E} f_{t}=0, \quad \operatorname{Cov}\left(f_{t}\right)=I_{m}
$$

Similarly as before, assume that $\mathbb{E} \varepsilon_{t}=0, \operatorname{Cov}\left(\varepsilon_{t}\right)=D=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{N}^{2}\right)$, and $\operatorname{Cov}\left(f_{t}, \varepsilon_{t}\right)=$ 0.

The covariance matrix of the return $r_{t}$ is

$$
\Omega=\operatorname{Var}\left(r_{t}\right)=\operatorname{Var}\left(\beta f_{t}\right)+\operatorname{Var}\left(\varepsilon_{t}\right)=\beta \beta^{\prime}+D .
$$

To estimate the model, we use principal component analysis. We first obtain the sample covariance matrix of $r_{t}$ :

$$
\hat{\Omega}=\frac{1}{T} \sum_{t=1}^{T}\left(r_{t}-\hat{\mu}\right)\left(r_{t}-\hat{\mu}\right)^{\prime}
$$

where

$$
\hat{\mu}=\frac{1}{T} \sum_{t=1}^{T} r_{t}
$$

Then we calculate the eigen-pairs $\left(\hat{\lambda}_{1}, \hat{v}_{1}\right),\left(\hat{\lambda}_{2}, \hat{v}_{2}\right), \ldots,\left(\hat{\lambda}_{N}, \hat{v}_{N}\right)$ of $\hat{\Omega}$ so that $\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \ldots \geq$
$\hat{\lambda}_{N}$. Then the estimated factor loadings are given by

$$
\hat{\beta}=\left[\sqrt{\hat{\lambda}_{1}} \hat{v}_{1}, \sqrt{\hat{\lambda}_{2}} \hat{v}_{2}, \cdots, \sqrt{\hat{\lambda}_{m}} \hat{v}_{m}\right]
$$

The estimator of the factors are given by

$$
\hat{f}_{t}=\left[\begin{array}{c}
\hat{v}_{1}^{\prime} / \sqrt{\hat{\lambda}_{1}} \\
\hat{v}_{2}^{\prime} / \sqrt{\hat{\lambda}_{2}} \\
\cdots \\
\hat{v}_{m}^{\prime} / \sqrt{\hat{\lambda}_{m}}
\end{array}\right] r_{t}
$$

To determine the number of factors in the statistical factor model, we employ the approach developed by Bai and Ng (2002). For a candidate number of factors $m$, we first estimate the $m$-factor model, get the loadings and factors, denoted by $\hat{\beta}^{m}$ and $\hat{f}_{t}^{m}$, respectively. Then we calculate

$$
V(m)=\ln \left(\frac{1}{N T} \sum_{t=1}^{T} \iota^{\prime}\left(r_{t}-\hat{\mu}-\hat{\beta}^{m} \hat{f}_{t}^{m}\right)\right)+m\left(\frac{N+T}{N T}\right) \ln \left(\frac{N T}{N+T}\right) .
$$

We compute the $V$ value for all candidate numbers of factors, and choose the $m$ that minimizes the $V$ value.

