
11 Cointegration and the Error Correction Models

When we model multiple time series simultaneously, we may encounter the situation that

more than one component series are non-stationary, and they could be drive by some common

stochastic trends. For example, let {εt} and {ut} be independent white noise, ∆xt = εt and

yt = 2xt + ut. Then {xt} is a random walk, and {yt} is a random walk plus some stationary

disturbances. Both series are non-stationary, and they are driven by the same random walk.

This system could also be written as
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or more compactly,

rt = Art−1 + vt,

where rt = (xt, yt)
′,
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and vt is white noise with variance
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11.1 Cointegration

If we know that two non-stationary time series {xt} and {yt} are related through yt = βxt+ut

where ut are some weakly stationary time series, we may want to estimate β by OLS. The

corresponding estimator is given by

β̂ =

(
1

T

T∑
t=1

x2t

)−1(
1

T

T∑
t=1

xtyt

)
.
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As oppose to the case in which {xt} and {yt} are weakly stationary, in the non-stationary

case
√
T (β̂−β) does not converge in distribution to some normal random variable any more.

In particular, in the case when ∆xt = εt for some white noise {εt}, we have

T
(
β̂ − β

)
=

(
1

T 2

T∑
t=1

x2t

)−1(
1

T

T∑
t=1

xtut

)

→d

(∫ 1

0

W1(r)
2dr

)−1(∫ 1

0

W1(r)dW2(r) + δ

)

where δ is a term that depends on the correlation between ut and εt.

The essence of the cointegration is that the non-stationarity of {yt} comes from the

non-stationary of {xt} through some linear relationship. After the cointegration, the non-

stationarity vanishes. That is, the remaining part {ut} is weakly stationary. This could be

generalized to the case where xt is a non-stationary vector process which is weakly stationary

after first difference, yt = x′tβ + ut and ut is weakly stationary.

There could be the case that the two time series {xt} and {yt} are non-stationary, but

they do not completely share the same source of non-stationarity. That is,

yt = x′tβ + et,

but et is non-stationary for all choice of β.

Now if we estimate β by OLS, we will get into the trouble of the so-called spurious

regressions. In particular, if {et} is weakly stationary after first difference, then

β̂ →d

(∫ 1
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and

R2 →d

W2W
′
1

(∫ 1

0
W1W

′
1

)−1 ∫ 1

0
W1W2∫ 1

0
W 2

2

,

where β̂ is the OLS estimator of β, W (β̂) is the Wald test statistic for the null hypothesis

that β = 0, and R2 is the R-square of the regression. We see from the above results that the

OLS estimator of β is random and does not converge to the true value of β even if the sample

size T is large. The Wald statistic diverges at the rate T , which will lead us to mistakenly

reject the null hypothesis β = 0 even if yt is not quite related to xt. The R2 is also random

as the sample size gets very large, and usually the values are close to one (once again even

if xt does not have any explanation power for yt).

11.2 Cointegrated VAR Models

To better understand what happens in a non-stationary VAR model where there may be

cointegration relationships among components of the time series, we look at two examples.

Both examples are VAR(1) models in the form of

xt = Axt−1 + εt

where {xt} is a two-dimensional vector process, A is the 2× 2 AR coefficient matrix, and εt

is two-dimensional white noise. In the first example,

A =

1 0

0 1

 .
The model becomes x1t
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 .
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Note that we have

x1t = x1,t−1 + ε1t

and

x2t = x2,t−1 + ε2t.

Both {x1t} and {x2t} are non-stationary, and we cannot find any β such that x1t + βx2t is

weakly stationary, as long as ε1t and ε2t are not perfectly correlated. In this case, we may

simply difference the series and conduct analysis using the differenced series. Note that in

this case, the AR coefficient A has two unit eigenvalues.

Now consider the second example where

A =

 1
2
−1

−1
4

1
2

 .
The model is given by

x1t
x2t

 =

 1
2
−1

−1
4

1
2


x1,t−1
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ε1t
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 .
It is easy to verify that

x1t + 2x2t = ε1t + 2ε2t,

and

x1t − 2x2t = x1,t−1 − 2x2,t−1 + (ε1t − 2ε2t).

Then we have found a linear combination of x1t and x2t, namely x1t + 2x2t, such that the

combined series is weakly-stationary, and another linear combination, namely x1t − 2x2t,

such that the combined series is a random walk, and therefore, non-stationary. Any other

linear combination ax2t + bx2t could be written as a linear combination of x1t + 2x2t and

x1t − 2x2t, i.e., a linear combination of a weakly stationary process and a non-stationary
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process. Therefore, these combined series must be non-stationary. In particular, the series

x1t and x2t are non-stationary. This argument shows that there is only one cointegration

relationship between x1t and x2t, given by x1t + 2x2t = ε1t + 2ε2t.

The above results could be obtained by left multiply both sides of the model in the second

example by 1 2

1 −2

 .
This operation could be viewed as a change of the coordinate system. What happens above

is that for the process {xt}, if we decompose xt according to the usual orthogonal coor-

dinate system, we get two coordinate processes, namely x1t and x2t, both of which are

non-stationary. If we only stick to this decomposition, we may likely to conclude that there

is two dimensional non-stationarity in the process. However, if we decompose xt according

to the coordinate system given by the matrix above, we get two coordinate processes of

which one is non-stationary and the other is stationary. So in fact, the process of xt has only

one-dimensional non-stationarity! In this case, differencing the series will difference both the

stationary part and the non-stationary part. The stationary part is the part that does not

require differencing. And if we difference a stationary series, all the information in the series

will be lost!

We can connect the above results with the eigenvalues of the AR coefficient matrix.

The AR coefficient matrix has two eigenvalues, namely 1 and 0. So as opposed to the

first example, in this example there are only one unit root, and the dimension of the non-

stationary component of the resulting process is one.

How to obtain the above two particular linear combinations? We may use the error

correction representation of the VAR model. We write

∆xt = xt − xt−1 = (A− I)xt−1 + εt,
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where

A− I =

−1
2
−1

−1
4
−1

2
.


Note that this matrix is not of full rank. Therefore, we may write A− I = αβ′ where both

α and β are some N × m matrices, and m is the rank of A − I. Note that α and β are

not uniquely determined, but the space spanned by their column vectors are unique. In our

example, we could let α = (−1,−1/2)′ and β = (1/2, 1)′. Then the cointegrating relationship

is given by β′xt, and the “random walk” relationship is given by α′⊥xt where α⊥ is any vector

that is orthogonal to α.

11.3 The Error Correction Models

In the previous section, we encountered the simplest error correction model given by

∆xt = αβ′xt−1 + εt.

We may consider a more general error correction model of the form

∆xt = µ+ αβ′xt−1 + Φ1∆xt−1 + · · ·+ Φp∆xt−p + εt

for εt ∼ WN(0,Σ) and some N ×m matrices α, β where m < N . The column vectors in β

give the cointegrating relationships, i.e., β′xt is weakly stationary.

To estimate the model, we consider two linear regressions

∆xt = µ0 + Ω1∆xt−1 + · · ·+ Ωp∆xt−p + ut

and

xt = µ1 + Θ1∆xt−1 + · · ·+ Θp∆xt−p + vt.
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We denote the residuals from the two regressions by ût and v̂t respectively. Then we construct

S00 =
1

T

∑
t=p+1

ûtû
′
t,

S01 =
1

T

∑
t=p+1

ûtv̂
′
t,

S10 =
1

T

∑
t=p+1

v̂tû
′
t,

S10 =
1

T

∑
t=p+1

v̂tv̂
′
t,

and solve the eigenvalue problem

S10S
−1
00 S01e = λS11e

where (λ, e) is the eigen-pair we would like to obtain. We then estimate β by

β̂ = [ê1, ê2, · · · , êm]

where the eigen-pairs are ordered so that λ̂1 > λ̂2 > · · · . We may estimate the other

parameters by running the regression

∆xt = µ+ αβ̂′xt−1 + Φ1∆xt−1 + · · ·+ Φp∆xt−p + εt.

To determine m, we consider the following hypothesis

H0 : m = r

versus

H1 : m > r

91



and the likelihood ratio statistic

−2 lnQ = −T
N∑

i=r+1

ln(1− λ̂i).

Johansen (1988) has shown that under the null,

−2 lnQ→d tr

{∫ 1

0

dWW ′
(∫ 1

0

WW ′dr

)−1 ∫ 1

0

WdW

}

where W is an (N − r)-dimensional Brownian motion with covariance matrix I. The critical

values could be obtained by simulations.
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