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1 Single Equation Linear Models

1.1 The Model

In the study of economics, we are frequently interested in the relationships between two sets of

variables {yi}ni=1 and {xi}ni=1. Often, these variables are non-deterministic in nature. Therefore,

we usually treat them as (real) random variables or vectors on some probability space (Ω,F ,P).1

A random variable or a random vector is a measurable function from the sample space Ω to R or

Rk.
Suppose the relationship is given by a linear form as

yi = x′iβ + εi (1.1)

where yi is a random variable, xi = (xi1, xi2, . . . , xik)
′ is a k-dimensional random vector, β =

(β1, β2, . . . , βk)
′ is a fixed k-dimensional vector, called the parameter (or the regression coefficient),

that represents the nature of this relationship, and εi, called the “error term”, is a random variable

that represents the “mismatched” part. We usually call yi the dependent variable, the response

variable, or the regressand and call xi respectively the independent variable(s), the response vari-

able(s), or the regressor(s). Our goal is to use the data to learn about the relationship β, but what

does β stand for?

We may always write yi = x′iβ
◦ + ε◦i where β◦ is any vector different from β and ε◦ defined as

ε+ x′(β − β◦) is the new “error term”. Note that the new model and the old model are exactly in

the same form! Without restrictions on the error term, we won’t be able to have a clear meaning

or interpretation of the coefficient β.

If we impose the restriction that E(εi|xi) = 0 for all i, then

β =
∂E(yi|xi)
∂xi

,

or

βj =
∂E(yi|xi)
∂xij

, j = 1, 2, . . . , k.

That is, βj is the marginal change in the conditional expectation of yi when the j-th component of

xi increases by one unit, holding the other components of xi constant. In econometric terms, we

say that βj is the partial effect of xij on E(yi|xi), or simply the partial effect of xij on yi.

The above discussion indicates that when we talk about an econometric model, for example, a

linear model as discussed above, we not only mean the linear form of the relationship yi = x′iβ+ εi,

but also the restrictions such as E(εi|xi) = 0 that we impose on the relationship. This restriction

gives us the meaning of the “relationship” β, and is as essential as the form of the model.

0 c© 2017-2021 by Bo Hu. All rights reserved.
1In this series of notes, if not mentioned otherwise, all random variables and random vectors are real. For details

of the concept of probability spaces, measurable functions and the axiomatic foundations of probability theory, see
Billingsley (1995, Chapter 1 and 2) or Shiryaev (1989, Chapter 2).

1



1.2 Identification

A fundamental question is whether such β is learnable at all, or in econometric terms, identifiable.

To give a general definition of identification, suppose a data generating system is governed by a

set of parameters θ and generates data {zi}ni=1, whose joint distribution is denoted by Pn(θ). If

the mapping θ 7→ Pn(θ) is invertible for some n, we say that θ is identifiable. In plain words,

identification means that we cannot find two different sets of parameter values that generate data

with the same joint distribution.

When θ is identifiable, the inverse of the mapping θ 7→ Pn(θ) is necessarily a function of the

joint distribution, and therefore, a function of the data {zi}ni=1. If we denote this function by

gn(z1, · · · , zn), then we say that θ is identified by θ = gn(z1, · · · , zn). Back to the linear model,

when we say that the regression coefficient β is identified, we mean that β can be written as a

function of some properties of the data {(xi, yi)}ni=1.

In this chapter we only focus on the situation where the data (xi, yi) are independent and

identically distributed (iid). Our results here can be generalized to the case in which {(xi, yi)}ni=1

is not independent and identically distributed. We introduce corresponding tools in Chapter 2.

In this chapter we make the following assumptions.

Assumption 1.1. Ey2
i < ∞ and E ‖xi‖2 < ∞ where ‖·‖ denotes the Euclidean norm defined by

‖(a1, a2, . . . , ak)‖ =
√
a2

1 + a2
2 + · · ·+ a2

k.

Assumption 1.2. rank(Exix′i) = k.

Assumption 1.3. Exiεi = 0.

Note that by Assumption 1.1, the expectation terms in Assumption 1.2 and 1.3 are well defined.

If Eε = 0, Assumption 1.3 is equivalent to that Cov(xi, εi) = 0. And it is obvious from (1.1) that

as long as x contains the constant regressor, we may always assume that Eεi = 0.

Theorem 1.1. Suppose Assumptions 1.1 - 1.3 hold, then β is identified.

Proof. Pre-multiply every term in (1.1) by xi and take expectation. By Assumption 1.3, we have

Exiyi = Exix′iβ.

From Assumption 1.2 it follows that

β =
(
Exix′i

)−1 Exiy.

�

We jump ahead a little bit here by noting that the set of all random variables with finite second

moments forms a Hilbert space2, which may be thought of as a infinite dimensional generalization

2The relevant concepts will be introduced in Chapter 3.
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of Euclidean spaces. Each random variable should be viewed as a vector in this space. The “dot

product” of two random variables w1 and w2 is defined to be Ew1w2, and the two random variables

are “orthogonal” if Ew1w2 = 0. Write

x′iβ = x′i
(
Exix′i

)−1 Exiyi = (Eyix′i)
(
Exix′i

)−1
xi := Pyi, (1.2)

then Px can be interpreted as the orthogonal projection of the regressand yi onto the subspace

spanned by the k regressors in xi.

1.3 Estimation

The ordinary least square estimation and the maximum likelihood estimations are frequently used

to estimate linear models.

1.3.1 The Ordinary Least Squares Estimation

The ordinary least squares (OLS) estimator β̂OLS for the coefficient β in the model (1.1) is defined

by:

β̂OLS = arg min
β

1

n

n∑
i=1

(yi − x′iβ)2, (1.3)

which yields

β̂OLS =

(
n∑
i=1

xix
′
i

)−1 n∑
i=1

xiyi =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)
. (1.4)

Note that under Assumption 1.2, the probability that 1
n

∑n
i=1 xix

′
i is invertible converges to 1. This

is because by the weak law of large numbers 1
n

∑n
i=1 xix

′
i →p Exix′i, and the continuous mapping

theorem implies that det( 1
n

∑n
i=1 xix

′
i)→p det(Exix′i). By definition of convergence in probability,

P
(∣∣det

(
1
n

∑n
i=1 xix

′
i

)
− det (Exx′)

∣∣ < ε
)
→ 1 for any ε > 0. Our result then follows by choosing

ε < |det(Exx′)|. The second order sufficient condition for minimization holds under Assumption 1.2:

the Hessian of the objective function 2
n

∑n
i=1 xix

′
i is positive definite with probability approaching

to 1. This follows by a similar argument as above, in which the continuous mapping theorem

is applied to the eigenvalues of a matrix. Note that Exix′i is always positive semi-definite as a

quadratic form and the full rank condition implies that it is in fact positive definite.

It is obvious that β̂OLS defined above is also the sample analogue estimator, or the method of

moment estimator for β. It should be pointed out that by denoting the estimator as β̂OLS , we

have suppressed the dependence of the estimator on the sample size n. In the following asymptotic

analysis, the results are obtained for n→∞.

The next theorem establishes the consistency and asymptotic normality of the OLS estimator

β̂OLS . An estimator is consistent if for any true value of β, the estimator converges to the true

value in probability if the sample size n goes to infinity. An estimator is asymptotically normal if

it converges in distribution to a normal random variable or vector after appropriate scaling.

3



Assumption 1.4. Ey4
i <∞,E ‖xi‖

4 <∞.

Theorem 1.2. Under Assumption 1.1 - 1.3, β̂OLS is consistent. If Assumption 1.4 also holds,

then
√
n
(
β̂OLS − β

)
→d N (0, V ) ,

where

V =
(
Exix′i

)−1 (Eε2
ixix

′
i

) (
Exix′i

)−1
.

Proof. Since

β̂OLS − β =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiεi

)
, (1.5)

consistency follows from that

1

n

n∑
i=1

xix
′
i →p Exix′i

and that
1

n

n∑
i=1

xiεi →p Exiεi = 0.

If in addition that Assumption 1.4 holds, then Eε2xx′ <∞. The asymptotic normality follows

immediately from the central limit theorem that

1√
n

n∑
i=1

xiεi →d N(0,Eε2xx′)

and the Slutsky’s theorem. �

It is natural to estimate the asymptotic variance V of
√
n(β̂OLS − β) by

V̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

ε̂2
ixix

′
i

)(
1

n

n∑
i=1

xix
′
i

)−1

,

where ε̂i = yi − x′iβ̂OLS is the residual. The estimator for the asymptotic variance is called the

heteroskedasticity-consistent estimator by White (1980). Andrews (1991) further considers the case

in which εi is not independent and studies the heteroskedasticity and autocorrelation consistent

(HAC) estimation of variance matrix of parameter estimators. We shall encounter such estimators

in Chapter 2 once we introduced concepts to handle dependence.

Theorem 1.3. Under Assumption 1.1 - 1.4,

V̂ →p V.
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Proof. Write

1

n

n∑
i=1

ε̂2
ixix

′
i =

1

n

n∑
i=1

ε2
ixix

′
i −

2

n

n∑
i=1

εix
′
i(β̂OLS − β)xix

′
i +

1

n

n∑
i=1

(β̂OLS − β)′xix
′
i(β̂OLS − β)xix

′
i.

Under Assumption 1.4, we have that 1
n

∑n
i=1 |εi| ‖xi‖

3 = Op(1) and that 1
n

∑n
i=1 ‖xi‖

4 = Op(1).

Since β̂OLS − β = op(1), we have that

1

n

n∑
i=1

ε̂2
ixix

′
i =

1

n

n∑
i=1

ε2
ixix

′
i + op(1)→p Eε2xx′.

Consistency of V̂ then follows immediately. �

Write β̂ = (β̂1, β̂2, · · · , β̂k)′ and let V̂jj be the (j, j)-th entry of V̂ . We define the asymptotic

standard error of β̂j by

s.e.(β̂j) =

√
V̂jj/n.

The variance σ2 of the error term εi could be estimated as the sample variance of the OLS

residuals:

σ̂2 =
1

n

n∑
i=1

ε̂2
i .

Using similar techniques as in the proof of Theorem 1.3, we may easily show that under Assumption

1.1 - 1.4, σ̂2 →p σ
2.

In the case of homoskedasticity, i.e., when E(ε2
i |xi) = σ2, the variance matrix V in the asymp-

totic distribution reduces to σ2 (Exix′i)
−1, and we may estimate V by

Ṽ =

(
1

n

n∑
i=1

ε̂2
i

)(
1

n

n∑
i=1

xix
′
i

)−1

.

If the true data process is heteroskedastic, but we treat it as homoskedastic and use Ṽ instead

of V̂ to estimate the variance matrix V , then the estimation of V is not consistent, and inferences

based on this estimator would be incorrect.

1.3.2 Projection Interpretation of the OLS Estimation

If we write

y =


y1

y2

...

yn

 , X =


x′1
x′2
...

x′n

 , and ε =


ε1

ε2

...

εn

 ,
then we may write (1.1) as

y = Xβ + ε,
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and (1.4) as

β̂OLS = (X ′X)−1X ′y.

Then we have that

ŷ =: Xβ̂ = PXy

and

ε̂ =: y − ŷ = (I − PX)y

where PX = X(X ′X)−1X ′ is the orthogonal projection in Rn onto the subspace R(X) spanned by

the column vectors of X. Note that I−PX is the orthogonal projection onto the subspace R(X)⊥.

That is, I − PX is the orthogonal projection onto the subspace that is orthogonal to R(X).

We may partition the model (1.1) as

yi = x′i1β1 + x′i2β2 + εi

where xi = (x′i1, x
′
i2)′ and β = (β′1, β

′
2)′. If we write X1 as the matrix whose rows are x′i1, and X2

as the matrix whose rows are x′i2, then we may write the model as

y = X1β1 + X2β2 + ε

and the fitted model as

y = X1β̂1 + X2β̂2 + ε̂

where β̂OLS = (β̂′1, β̂
′
2)′ is partitioned accordingly. Pre-multiply both sides by I − PX2 , and notice

that ε̂ ∈ R(X)⊥ ⊂ R(X2)⊥, we have that

(I − PX2)y = (I − PX2)X1β̂1 + ε̂.

Also ε̂ ∈ R(X)⊥ ⊂ R(X1)⊥, then

X ′1(I − PX2)y = X ′1(I − PX2)X1β̂1.

This implies that

β̂1 =

(
X ′1(I − PX2)X1

)−1

X ′1(I − PX2)y,

or equivalently,

β̂1 =

 n∑
i=1

xi1x
′
i1 −

n∑
i=1

xi1x
′
i2

(
n∑
i=1

xi2x
′
i2

)−1 n∑
i=1

xi2x
′
i1

−1

•

 n∑
i=1

xi1yi −
n∑
i=1

xi1x
′
i2

(
n∑
i=1

xi2x
′
i2

)−1 n∑
i=1

xi2yi

 .
(1.6)
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Note that this is the sample analogue estimator of(
E[x1i(I − Px2i)x′1i]

)−1

E[x1i(I − Px2i)yi],

where Pxji is the orthogonal projection (in the Hilbert space of all random variables with finite

second moments) onto the subspace spanned by random variables in xji, j = 1, 2.

1.3.3 Constrained Least Squares

Suppose that we have the constraint Rβ = r on the parameter β where where R is a q × k matrix

with rank q ≤ k, and r is a q-dimensional vector. We want the estimated β, denoted by β̃, to satisfy

the restriction Rβ̃ = r. This constrained least squares estimator could be obtained by solving the

following constrained minimization problem

min
β

1

n

n∑
i=1

(yi − x′iβ)2

s.t. Rβ = r.

One may solve this constrained optimization problem by any numerical method that is appli-

cable. However, since the constraint is linear, it is straightforward to get the analytical solution,

which illuminates the relationship between the constrained least squares estimator β̃ and the un-

constrained OLS estimator β̂OLS :3

Theorem 1.4. Suppose that Assumptions 1.1 and 1.2 hold. Then

β̃ = β̂OLS −

(
1

n

n∑
i=1

xix
′
i

)−1

R′

R( 1

n

n∑
i=1

xix
′
i

)−1

R′

−1 (
Rβ̂OLS − r

)
.

Write An =
(

1
n

∑n
i=1 xix

′
i

)−1
. Then under the constraint Rβ = r, we have

β̃ − β =
[
I −AnR′

(
RAnR

′)−1
R
] (
β̂OLS − β

)
.

It is straightforward to obtain the asymptotic distribution of β̃ from Theorem 1.2. Also, we note

here that AnR
′ (RAnR

′)−1R is the non-orthogonal projection onto R(AnR
′) along the direction of

R(R′)⊥, and I −AnR′ (RAnR′)−1R is therefore the non-orthogonal projection onto R(R′)⊥ along

the direction of R(AnR
′).

3The Lagrangian can be written as L = 1
2n

∑
(y − x′iβ)2 − λ′(Rβ − r). The first order condition is then given

by 1
n

∑
xiyi − 1

n

∑
xix
′
iβ − R′λ = 0. We first solve for β as an expression of R, λ and the data through this first

order condition, noting that 1
n

∑
xix
′
i is invertible with probability converging to one. We then substitute it into the

constraint Rβ = r to solve for λ as an expression of R, r and the data. In the end we substitute the expression for λ
back into the first order condition to get the optimal β.
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1.3.4 Maximum Likelihood Estimation

The method of maximum likelihood has been one of the most popular methods in estimation since

the advocacy by Fisher (1922). To state the general idea, let x = {x1, x2, . . . , xn} be a set of random

variables or random vectors which we believe to be generated from one of a class of models indexed

by the parameter θ ∈ Θ. The density of a realization x◦ = {x◦1, x◦2, . . . , x◦n} of x is dependent on the

value of θ and may be written as fθ(x
◦). The likelihood function L(θ;x◦) of θ given the realization

x◦ is the density fθ(x
◦) viewed as a function of θ. The maximum likelihood estimator (MLE) of θ

is defined by

θ̂MLE = arg max
θ∈Θ

L(θ;x◦).

We may replace the likelihood function L(θ;x◦; ) with the log-likelihood function `(θ;x◦) = lnL(θ;x◦; )

in the definition of MLE since the log transformation is strictly increasing.

For the linear model, the likelihood is dependent on the distributional assumptions of the error

term.

Assumption 1.5. εt ∼ iid N(0, σ2), and the distribution of x1, x2, . . . , xn does not depend on the

parameters β and σ2.

Let z and w be random variables or vectors. With a little abuse of notation, we use fθ(z|w)

to denote the conditional density of observing a realization (z◦, w◦) of the random element (z, w).

We do similar things to density functions and likelihood functions. That is, although in principle

z and w are random elements, when they appear in density or likelihood functions we treat them

as labels, which represents the realizations of the corresponding random elements.

Under Assumption 1.5 and the model (1.1), the density function of {(xi, yi)}ni=1 is

fβ,σ2(y1, x1, y2, x2, . . . , yn, xn) =

n∏
i=1

fβ,σ2(yi, xi)

=

n∏
i=1

fβ,σ2(yi|xi)fβ,σ2(xi)

=

[
n∏
i=1

1√
2πσ2

exp

(
−(yi − x′iβ)2

2σ2

)] n∏
i=1

fβ,σ2(xi).

The likelihood, which is viewed as a function of β, is therefore proportional to the term in the

square bracket in the last line above, and the log-likelihood therefore is

`(β, σ2) = C − n

2
lnσ2 −

n∑
i=1

(yi − x′iβ)2

2σ2
,

where C is a constant independent of β and σ2.

The maximum likelihood estimator is obtained by finding values for β and σ2 that maximize

the log-likelihood function. Note that the value of σ2 does not affect the choice of the optimal β
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in this maximization problem. It is quite straightforward to show that β̂MLE = β̂OLS . Therefore,

MLE and OLS are equivalent under Assumption 1.5. The results in Theorem 1.2 also hold for

β̂MLE .

Also, from the maximization problem we have

σ2
MLE =

1

n

n∑
i=1

(yi − x′iβ̂MLE)2 =
1

n

n∑
i=1

ε̂2
i ,

which is a consistent estimator of σ2.

Similarly, in view of the relationship between the OLS objective function and the MLE objective

function, one concludes immediately the ML estimator of β under the linear constraint Rβ = r is

also the same as the OLS estimator under the constraint.

1.3.5 Quasi-Maximum Likelihood Estimation

In our settings above, the OLS estimator of β is consistent, regardless of the distribution of the

error term. This implies that even if the distribution of εi is not normal, we may still maximize the

“false” normal likelihood function, and the resulting “false” ML estimator for β is still consistent,

since this “false” ML estimator is the same as the OLS estimator.

Estimation based on a likelihood that is different from the true one is called quasi-maximum

likelihood estimation, or pseudo-maximum likelihood estimation. Whether the likelihood is the true

one depends on whether the econometric model is correctly-specified. The specification involves

both the form of the model (e.g., whether the relationship between the dependent and independent

variables is linear) and the underlying distributional assumptions (e.g., whether the variables are

jointly normally distributed.)

Usually, if the “false” or “imprecise” likelihood captures the essence of the model, and is not too

far away from the true likelihood, the quasi-maximum likelihood estimator could still be consistent

and asymptotically normal. However, it is less efficient than the maximum likelihood estimator,

meaning that it has a larger variance than the maximum likelihood estimator. See White (1982)

for reference. We shall also return to this issue in a more general setting in Chapter 6.

1.4 Statistical Inferences

Since the OLS and MLE estimator of β is the same in our settings, in this section we denote both

of them by β̂ for the unrestricted estimator.
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1.4.1 Student’s t-test

Suppose that we want to test the null hypothesis H0 : βj = βj0 against the alternative H1 : βj 6= βj0,

where βj0 is a given real number. We define the t-test statistic for H0 by

t =
β̂j − βj0
s.e.(β̂j)

.

The following theorem, which gives the asymptotic distribution of t, follows immediately from

Theorem 1.2.

Theorem 1.5. Suppose that Assumptions 1.1 - 1.4 hold. Under H0,

t→d N(0, 1).

It is known that t-test based on the HAC standard error estimator over rejects when the sample

size is small.4

1.4.2 The Wald Test

Suppose that we want to test the null hypothesis H0 : Rβ = r against the alternative H1 : Rβ 6= r

where R is a q×k matrix with rank q ≤ k, and r is a q-dimensional vector. The Wald test statistic

is defined as

W = n(Rβ̂ − r)′
(
RV̂ R′

)−1
(Rβ̂ − r).

Theorem 1.6. Suppose that Assumptions 1.1 - 1.4 hold. Under H0,

W →d χ
2
q .

Proof. The result follows immediately from that under H0,

√
n(Rβ̂ − r) =

√
nR(β̂ − β)⇒ N(0, RV R′).

�

The Wald test could be easily generalized for nonlinear restrictions. See, e.g., Newey and

McFadden (1994, Section 9). Aside from the Wald test, the Lagrange multiplier test and the

likelihood ratio test, which we shall not elaborate on at this moment, are popular asymptotic tests

that have been carefully studied and are frequently used. See Wooldridge (2010, Chapter 12 and

13).

4Hausman and Palmer (2012) states that “it is not uncommon for the actual size of the test to be 0.15 when the
nominal size is the usual 0.05.” For more discussions on this issue and methods (including bootstrap) to obtain the
correct size of the test, see, e.g., Hausman and Palmer (2012) and MacKinnon (2013).
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1.5 Endogeneity and Instrumental Variables Estimation

When Assumption 1.3 fails, that is, when Exiεi 6= 0, we say that xi is endogenous. It is obvious from

the proof of Theorem 1.2 that in the presence of endogeneity, the OLS estimator is not consistent

any more. Endogeneity usually arises because of the existence of omitted variables, measurable

errors, and/or simultaneity. For detailed discussions of the three situations, see Wooldridge (2010,

Chapter 4 and 5).

Instrumental variables estimation could be used to treat endogeneity. Suppose that in our model

(1.1) we have that Assumptions 1.1 and 1.2 hold but Assumption 1.3 fails. Suppose as before that

xi has dimension k. Suppose that there exists an l dimensional iid random vectors {zi} such that

the following assumptions hold:

Assumption 1.6. E ‖zi‖2 <∞,Eziεi = 0, rank(Eziz′i) = l and rank(Ezix′i) = k.

Explanatory variables in such zi are called instrument variables (IV), or simply, instruments.

The condition Eziεi requires that the instruments are not correlated with the error term. The

condition rank(Ezix′i) = k, loosely speaking, requires that the instruments should be correlated

with xi, the endogenous explanatory variables. As one will see soon, this condition is crucial for

identification of β. Note that for Assumption 1.6 to hold, it is necessary that l > k. If a explanatory

variable does not correlate with εi, that is, if it is not endogenous, then it is obvious that it could

serve as an instrument. Then l > k requires that besides the exogenous explanatory variables, we

should have at least as many extra instruments as the number of endogenous explanatory variables.

The following theorem establishes the identification of β.

Theorem 1.7. Suppose that Assumptions 1.1 and 1.6 hold. Then β is identified.

Proof. Let Pzi be the orthogonal projection in the Hilbert space of finite second moment random

variables onto the space spanned by the random variables in zi. Premultiply both sides of (1.1) by

Pzi . Since Eziεi = 0, by (1.2) we have that

Pziyi = Pzix
′
iβ.

Then β could be identified by

β =
(
ExiPzix

′
i

)−1 ExiPziyi

since the assumptions that Eziz′i and Ezix′i are full rank implies that ExiPzix′i is full rank, and

therefore invertible. �

It is then immediate to propose the IV estimator based on the sample analogue of the above

identifying relationship:

β̂IV =

( n∑
i=1

xiz
′
i

)(
n∑
i=1

ziz
′
i

)−1( n∑
i=1

zix
′
i

)−1(
n∑
i=1

xiz
′
i

)(
n∑
i=1

ziz
′
i

)−1( n∑
i=1

ziyi

)
.
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Note that the IV estimator could be obtained by the following two-step least square procedure:

1. Run OLS regression of each random variables in x on z. Collect the fitted values (in the

original order) in the vector x̂.

2. Run OLS regression of y on x̂.

Similarly as in the proof of Theorem 1.2 and 1.3, it is straightforward to establish the consistency

and asymptotic normality of the IV estimator.

Theorem 1.8. Suppose that Assumptions 1.1 and 1.6 hold, then β̂IV is consistent. If in addition

Assumption 1.4 holds, then

√
n
(
β̂IV − β

)
→d N

(
0, A−1BA−1

)
,

where

A = (Exz′)(Ezz′)−1(Ezx′)

and

B = (Exz′)(Ezz′)−1(Eε2xx′)(Ezz′)−1(Ezx′).

A and B could be consistently estimated using sample analogue with εi replaced by ε̂i, the IV

estimation residuals.

In practice, it could be difficult to find good instruments. Often, the requirement that the

instruments do not correlate with the error term contradicts with the requirement that the instru-

ments correlate with the endogenous explanatory variables. Even if one can find instruments that

satisfy these requirements, the instruments could be weak in the sense that the correlation between

the endogenous explanatory variables and the instruments is small. Such weak instruments may

lead to large asymptotic variance of the IV estimator, making inference useless (nothing will be sig-

nificant). In that case, one must choose between an inconsistent, but small-variance OLS estimator

and a consistent, but large-variance IV estimator. For more discussion of issues with instrumental

variables estimation, see Wooldridge (2010, p. 107-112).
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2 Weakly Stationary Time Series

Starting from this chapter, we look at samples that are not independent, but are temporally corre-

lated.

2.1 Stationary Time Series

Let (Ω,F ,P) be the underlying probability space.

Definition 2.1. A stochastic process X = (Xt)t∈T is a collection of random variables or vectors

indexed by t ∈ T . In time series econometrics, T usually has the interpretation of a set of time.

If T has a finite or countable number of elements, such as the set of integers, the stochastic

process is said to be in discrete time. If T is some interval of the real line, then the stochastic

process is said to be in continuous time. A series of data from a discrete-time stochastic process

is usually called a time series. In this course, we shall mainly deal with discrete-time stochastic

processes.

We may take a stochastic process X = X(t, ω), t ∈ T, ω ∈ Ω as a function of two arguments.

X(t, ·) is simply Xt, the random variable (vector) at time t. X(·, ω) is a sample path, which is the

trajectory of this stochastic process for a particular realization.

Definition 2.2. A time series (Xt)t∈Z is said to be strictly stationary if the joint distribution of

(Xt1 , Xt2 , . . . , Xtk) is the same as the joint distribution of (Xt1+h, Xt2+h, . . . , Xtk+h) for all k ∈
Z+, h ∈ Z and t1, . . . , tk ∈ Z.

The above definition is equivalent to that the joint distribution of (X1, X2, · · · , Xk) is the same

as the joint distribution of (X1+h, X2+h, · · · , Xk+h) for all k ∈ Z+ and h ∈ Z.

Definition 2.3. For a time series (Xt)t∈Z such that Var(Xt) <∞ for all t, define its autocovariance

function γ(·, ·) as

γ(t, s) = Cov(Xt, Xs) = E(Xt − EXt)(Xs − EXs)
′.

Definition 2.4. A time series (Xt)t∈Z is said to be weakly stationary if for any t, s, h ∈ Z, EXt =

EXs, and γ(t, s) = γ(t+ h, s+ h).

Note that the definition of a weakly stationary time series implicitly requires the existence

of the first two moments of the random variables (vectors) in the time series. The value of the

autocovariance function γ(t, s) of such a time series depends only on the time difference t− s but

not on the individual values of t and s. Therefore, for a weakly stationary time series, we may

redefine its autocovariance function as a function of the time lag by

γ(k) = γ(k, 0) = E(Xt − EXt)(Xt−k − EXt−k)
′.

0 c© 2017-2021 by Bo Hu. All rights reserved.
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It is easy to see that γ(−k) = γ(k)′, where A′ denotes the transpose of A. When Xt is a (scalar)

random variable, γ(k) = γ(−k).

We may also define the autocorrelation functions ρ(k) of a weakly stationary time series with

autocovariance function γ(k) by

ρij(k) =
γij(k)√

γii(0)γjj(0)
,

where Aij denotes the (i, j)-th entry if A is a matrix. It is apparent that |ρij(k)| ≤ 1 for all i, j and

k, ρii(0) = 1 for all i, and ρ(−k) = ρ(k)′.

Note that neither strict stationarity nor weak stationarity implies each other. A strictly sta-

tionary time series can fail to be weakly stationary if it does not have well defined first or second

moment. However, for a strictly stationary time series with well defined variance (and therefore

mean), it is weakly stationary. On the other hand, it is obvious that weak stationarity does not

imply strict stationarity since weak stationarity does not say anything about moments higher than

the second. However, in the case where the first two moments completely determines the distri-

bution, weak stationarity implies strict stationarity. For example, strict stationary is equivalent to

weak stationary for Gaussian time series.

Definition 2.5. A time series (Xt)t∈Z is called a Gaussian time series if the joint distribution of

(Xt1 , Xt2 , . . . , Xtk) is normal for any choice of t1, t2, . . . , tk ∈ Z.

Here we provide a note about the joint normal distributions. If (X1, X2, . . . , Xk) is jointly

normal, then Xi is normal for each i ∈ 1, . . . , k. However, if each Xi is normal, (X1, . . . , Xk) is not

necessarily normal. If the Xi’s are mutually independent and each Xi is normal, then (X1, . . . , Xk)

is normal. As a consequence, if (Xt)t∈Z is a sequence of independent random variables, and each

Xt is normal, then (Xt)t∈Z is a Gaussian time series.

An important class of weakly stationary time series is the mean-zero serially uncorrelated weakly

stationary time series, which are called white noise and serve as the building block of many other

classes of time series.

Definition 2.6. A time series (εt)t∈Z is called a white noise process if for any t, s ∈ Z, Eεt = 0,

and

E(εtε
′
s) =

Σ, t = s,

0, t 6= s.

A Gaussian white noise process is a white noise process who is also a Gaussian time series.

Each εt in a Gaussian white noise process is normally distributed, and is independent of any other

ε’s in the series.

At the end of this section, we give a property of the covariance function.

Theorem 2.7. Let γ : Z → M(n) be a mapping from the set of all integers to the set of all n-

dimensional square matrices. Then γ is the autocovariance function of a weakly stationary time

series if and only if γ(k) = γ(−k)′ for any k ∈ Z and
∑n

i=1

∑n
j=1 a

′
iγ(ti − tj)aj ≥ 0 for any

t1, . . . , tn ∈ Z, a1, . . . , an ∈ Rn and n ∈ N.
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Proof. Necessity. Let γ be the autocovariance function of a weakly stationary time series (Xt)t∈Z.

Without loss of generality assume that EXt = 0. Obviously γ(k) = γ(−k)′. For any a1, . . . , an ∈ Rn,∑n
i=1

∑n
j=1 a

′
iγ(ti − tj)aj = Var(

∑n
i=1 aiXti) ≥ 0.

Sufficiency. A strictly stationary Gaussian time series with autocovariance function γ that

satisfies the conditions could be constructed by the Kolmogorov’s existence theorem and the fact

that the distribution of Gaussian random vectors are fully determined by their means and covariance

matrices. See, e.g., Brockwell and Davis (1991, Theorem 1.5.1). �

2.2 Some Asymptotic Results

We give some general results that will be useful in asymptotic analysis in time series setting. This

exposition here mainly follows White (2001, Chapter 3, 5) and Shiryaev (1989).

2.2.1 Law of Large Numbers

We start from the simplest case.

Theorem 2.8. Let ξ1, ξ2, . . . be a sequence of independent and identically distributed random vectors

with E |ξ1| <∞. Let µ = Eξ1. Then

1

T

T∑
t=1

ξt →a.s. µ.

In fact, the conclusion of the theorem continues to hold if Eξ1 exists but is not necessarily finite.

Proof. See, e.g., White (2001, p. 32) and Shiryaev (1989, p. 391). �

We now relax the identically distributed assumption.

Theorem 2.9. Let ξ1, ξ2, . . . be a sequence of independent random variables with µt = Eξt. Let

ϕ : R → R be positive, even and continuous such that ϕ(x)
|x| is increasing and ϕ(x)

x2
is decreasing on

R+. If there exists a sequence 0 < at ↑ ∞ such that

∞∑
t=1

Eϕ(ξt − µt)
ϕ(at)

<∞,

then
T∑
t=1

ξt − µt
at

converges almost surely. By Kronecker’s Lemma, this implies that

1

aT

T∑
t=1

(ξt − µt)→a.s. 0.

Proof. See, e.g., Chung (2001, p. 129-132). �

15



Corollary 2.10. Let ξ1, ξ2, . . . be a sequence of independent random vectors with µt = Eξt. If

there exists some δ > 0 such that

sup
t

E |ξt − µt|1+δ <∞,

then

1

T

T∑
t=1

(ξt − µt)→a.s. 0.

Proof. This is a corollary of Theorem 2.9 by taking ϕ(x) = |x|1+δ and at = t. �

The condition in the above theorem could be replaced by supt E |ξt|
1+δ < ∞. In fact, by the

cr inequality we have E |ξt − µt|1+δ ≤ 2δ(E |ξt|1+δ + |µt|1+δ) and the boundedness of |µt| is due to

Jensen’s inequality.

Remarks 2.11. The convergence rates in Theorem 2.9 can be sharpened if we choose aT properly.

For example, let s2
T =

∑T
t=1 Var(ξt) → ∞. Then by the Abel-Dini Theorem (Hildebrandt, 1942,

Theorem Ia), we have
∑T

t=1
E(ξt−µt)2

s2T (ln s2T )1+2ε < ∞ for any ε > 0. Then by the above theorem, we have

1
s2T (ln sT )1/2+ε

∑T
t=1(ξt − µt)→a.s. 0 for any ε > 0. For the case when ξt is independent and has the

same variance, we have that 1√
T (ln

√
T )1/2+ε

∑T
t=1(ξt−µt)→a.s. 0. The denominator has a divergence

rate a little bit faster than T 1/2, but slower than T 1/2+δ for any δ > 0.

We may compare the results with the Central Limit Theorem, which will be introduced in the

next section. Under certain regularity conditions, the central limit theorem states that 1√
T

∑T
t=1(ξt−

µt) →d N(0, σ2) for some σ2 > 0. Then we obviously have that 1√
T

∑T
t=1(ξt − µt) 6→a.s. 0. Now

the questions is, is there a cutting-edge rate between
√
T and

√
T (ln

√
T )1/2+ε that determines

convergence and non-convergence? The law of iterated logarithm gives an affirmative answer. It

says that for an iid sequence {ξt} with finite variance, lim supT
1√

2T ln lnT

∑T
t=1(ξt − µt) = σ a.s..

More general laws of iterated logarithm for the independent but heterogeneous case are given

in Wittmann (1985) and Wittmann (1987). We state the result in Wittmann (1985) here.

Theorem 2.12. Let ξ1, ξ2, . . . be a sequence of independent random variables with µt = Eξt and

Var(ξt) <∞. Let s2
T =

∑T
t=1 Var(ξt)→∞. If lim supT

sT+1

sT
<∞ and

∞∑
t=1

E |ξt − µt|p(
2s2
T ln ln+ s2

T

)p/2 <∞
for some 2 < p ≤ 3 where ln+ x = max{e, lnx}, then

lim sup
T→∞

1√
2s2
T ln ln+ s2

T

T∑
t=1

(ξt − µt) = 1 a.s..

We now turn to the dependent and identically distributed case. Identical distribution, or even

strict stationarity, is not sufficient for a law of large numbers to hold. To give an example, let {xt} be
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an iid sequence of N(0, 1) random variables, and y be a N(0, 1) random variable independent of {xt}.
Define ξt = xt+y. Then {ξt} is strictly stationary, and Eξt = 0. However, 1

T

∑T
t=1 ξt →a.s. y, which

is random. The reason why the law of large numbers fail here is that the sequence {ξt}, although

strictly stationary, exhibits too much temporal dependence. In particular, the dependence of xt

and xt+k does not die out as k grows big.

One way to restrict the temporal dependence and obtain a law of large numbers is through the

concept of ergodicity. Let (Ω,F ,P) be a probability space. A measurable transformation S : Ω→ Ω

is called measure-preserving if for every A ∈ F , P(S−1A) = P(A). Pointcaré’s recurrence theorem

states that if S is a measure-preserving transformation and A ∈ F , then for almost every ω ∈ Ω,

Snω ∈ A for infinitely many n ≥ 1. To gain some intuition, take Ω as the collection of all molecules

in a glass of wine, where each molecule is represented by its position, or a vector ω in R3, and

P be the measure of volume, where the volume of all liquid in the glass is normalized to be one.

Let S represent the action of stirring the wine using a stick. Then Sω gives the position after one

stir of a molecule originally at ω. The action of stirring is a measure-preserving transformation

since it changes the location of the molecules in the wine, but it does not affect their volumes.

The Pointcaré’s recurrence theorem says that if we continue to stir the wine, then any particular

molecule in a volume of wine will revisit that volume again and again.

Given a measure-preserving transformation S, a set A ∈ F is called invariant if S−1A = A. A

measure-preserving transformation S is called ergodic if every invariant set has measure zero or

one. In our stirring wine example, if the stirring action is ergodic, it means that for any volume of

the wine, as long as it is not the whole volume, some of the molecules in that volume will move out

of that volume after one stir; No part of the glass of wine can be “autonomous” if we stir. Given

that molecules will move out of their old areas and come back again and again, it is expected that

molecules will move here and there. Actually, ergodicity implies that every molecule actually will

visit “everywhere” in the liquid if keep stirring forever.1 Each molecule will run through the whole

volume of the liquid. Not surprisingly, we have the following theorem.

Theorem 2.13. Let S be a measure-preserving transformation and ξ = ξ(ω) be a random variable

with E |ξ| <∞. If S is ergodic, then

lim
T→∞

1

T

T∑
t=0

ξ(Stω) = Eξ a.s..

Suppose a cup of wine starts from an initial state in which the liquid is separated in two layers

that the bottom layer is pure water (80%), and the top layer is pure alcohol (20%). If we take ξ(w)

to be the indicator function that takes value one when the molecule at ω is an alcohol molecule

and zero when the molecule at ω is a water molecule in the initial state of the wine, the above

theorem implies that as the stirring goes on, the probability of any molecule being in the top layer

will approach 20%, regardless of its type. After sufficient stirring, alcohol and water are mixed

1For the exact meaning of “everywhere”, see Halmos (2006, p. 26, Lemma).
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well. That is, the state of the wine after sufficient stirring is irrelevant of its initial state.

A measure-preserving transformation is ergodic if and only if it is weak mixing, i.e., if for any

A,B ∈ F ,

lim
T→∞

1

T

T∑
t=1

P(A ∩ S−tB) = P(A)P(B).

We may think S−tB as being the event B shifted t periods back into the past. Ergodicity then

requires that for any A and B, A and S−tB should be independent on average in the limit. Obvi-

ously, weak mixing is implied by a stronger condition: A measure-preserving transformation S is

mixing (in the ergodic-theoretic sense) if for all A,B ∈ F , limt→∞ P(A ∩ S−tB) = P(A)P(B).

For any random variable ξ on (Ω,F ,P), given a measure-preserving transformation S, we define

a sequence ξ1, ξ2, . . . of random variables by ξi(ω) = ξ(Siω). Then it is easy to see that ξ1, ξ2, . . . is

a strictly stationary sequence. Conversely, let ξ1, ξ2, . . . be a strictly stationary sequence of random

variables on (Ω,F ,P). Then we can always find ξ′1, ξ
′
2, . . . on a probability space (Ω′,F ′,P) where

Ω′ = R∞, F = B(R∞) and P′ the distribution of {ξ} and a measure-preserving transformation

S such that (ξ′1, ξ
′
2, . . .) have the same distribution as (ξ1, ξ2, . . .) and that ξ′i+1(ω) = ξ′i(Sω). For

details of the proofs, see, e.g., Shiryaev (1989, p. 405). By the above argument, we have associated

any strictly stationary time series with a measure-preserving transformation.

Now let {ξt} be a strictly stationary time series on (Ω,F ,P), and S the associated measure-

preserving transformation as constructed above. Then {ξt} is called ergodic if its associated

measure-preserving transformation is ergodic. Equivalently, if we define a set A ∈ F to be invariant

with respect to {ξ} if there is a setB ∈ R∞ such that for all n ≥ 1, A = {ω ∈ Ω : (ξn, ξn+1, . . .) ∈ B},
then {ξt} is ergodic if each of its invariant sets has measure zero or one. For details, see Shiryaev

(1989, p. 412-413). Now we have

Theorem 2.14. Let ξ1, ξ2, . . . be strictly stationary and ergodic with E |ξ1| <∞. Then

1

T

T∑
t=1

ξt →a.s. Eξ1.

Proof. See, e.g., White (2001, p. 44). �

We may construct new strictly stationary and ergodic sequences from existing strictly stationary

and ergodic sequences.

Theorem 2.15. Suppose ξ1, ξ2, . . . is a strictly stationary and ergodic sequence. If {ηt} is a se-

quence defined by ηt = f(. . . , ξt−1, ξt, ξt+1, . . .) where f is a measurable function into Rk, then {ηt}
is strictly stationary and ergodic.

Proof. See, e.g., White (2001, p. 44). �

Now we look at general dependent heterogeneous sequences. We first introduce some more de-

tailed concepts on mixing, which implies ergodicity. The first of the strong mixing conditions
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is introduced in Rosenblatt (1956). For a sequence of random elements {ξt}, we let F t−∞ =

σ(. . . , ξt−1, ξt) be the σ-algebra generated by the sequence up to time t, and F∞t = σ(ξt, ξt+1, . . .)

be the σ-algebra generated by the sequence from time t on. Now we define the mixing coefficients

α(k) = sup
t

sup
A∈Ft−∞,B∈F∞t+k

|P(A ∩B)− P(A)P(B)| ,

φ(k) = sup
t

sup
A∈Ft−∞,B∈F∞t+k,

P(A)>0

|P(B|A)− P(B)| ,

ψ(k) = sup
t

sup
A∈Ft−∞,B∈F∞t+k,
P(A)>0,P(B)>0

∣∣∣∣ P(A ∩B)

P(A)P(B)
− 1

∣∣∣∣
and

ρ(k) = sup
t

sup
f∈L2

R(Ft−∞),

g∈L2
R(F∞t+k)

|Corr(f, g)| ,

where L2
R(A) is the space of (equivalent classes) of square integrable, A-measurable real-valued

random variables. We also define

β(k) = sup
t

sup
{A1,...,AI}∈τ(Ft−∞),

{B1,...,BJ}∈τ(F∞t+k)

1

2

I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|

where τ(A) is the collection of all finite A-measurable partitions of Ω. These coefficients measure

the dependence between events separated by at least k periods. If α(k), φ(k), ψ(k), ρ(k) or β(k)

converges to zero as k →∞, the process {ξt} is called α-mixing (strong mixing), φ-mixing (uniform

mixing), ψ-mixing, ρ-mixing, or β-mixing (absolutely regular), respectively. If α(k) = O(k−a−ε)

for some ε > 0, then we say that α is of size −a. Similarly, we can define sizes of the other mixing

coefficients.

It has been well established in the literature of strong mixing conditions (see, e.g., Bradley

(2005)) that

2α(k) ≤ β(k) ≤ φ(k) ≤ 1

2
ψ(k),

and

4α(k) ≤ ρ(k) ≤ ψ(k).

We have the following implications:

m-dependence ⇒ ψ-mixing ⇒ φ-mixing
⇒ β-mixing ⇒

⇒ ρ-mixing ⇒
α-mixing.

In general, there is no other implications between these mixing conditions except for those that can
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be derived through transitivity.

We make a remark here that although the phrase “strong mixing condition” is used to refer to

the α-mixing, the phrase “strong mixing conditions” used in the plural form refers to all mixing

conditions that are at least as strong as α-mixing.

In the case where {ξt} is strictly stationary, we clearly have that

α(k) = sup
A∈F0

−∞,B∈F∞k
|P(A ∩B)− P(A)P(B)| .

Similar results hold for the other mixing coefficients.

Under strict stationarity, strong mixing conditions are stronger than ergodicity.

Theorem 2.16. If ξ1, ξ2, . . . is a strictly stationary and α-mixing, then it is mixing (in the ergodic-

theoretic sense) and therefore ergodic.

Proof. See, e.g., White (2001, p. 48). �

The following two theorems are due to McLeish (1975). We use the exposition of White (2001,

p. 49).

Theorem 2.17. Let {ξt} be a sequence of random vectors with µt = Eξt. Suppose

∞∑
t=1

(
E |ξt − µt|r+δ

tr+δ

) 1
r

<∞,

for some r ≥ 1 and 0 < δ ≤ r. If φ is of size − r
2r−1 , r ≥ 1 or α is of size − r

r−1 , r > 1, then

1

T

T∑
t=1

(ξt − µt)→a.s. 0.

The theorem generalizes the results in Theorem 2.9, in which r = 1. Also, we have

Theorem 2.18. Let {ξt} be a sequence of random vectors. If φ is of size − r
2r−1 , r ≥ 1 or α is of

size − r
r−1 , r > 1, and

sup
t

E |ξt|r+δ <∞

for some δ > 0, then

1

T

T∑
t=1

(ξt − µt)→a.s. 0.

Now we consider functions of mixing processes. We obviously have the following result.

Theorem 2.19. Suppose ξ1, ξ2, . . . is φ-mixing (α-mixing) of size −a, a > 0. If {ηt} is a sequence

defined by ηt = f(. . . , ξt−1, ξt, ξt+1, . . .) where f is a measurable function into Rk, then {ηt} is

φ-mixing (α-mixing) of size −a.
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Theorem 2.20. Suppose ξ1, ξ2, . . . is φ-mixing (or α-mixing), and ηt = f(. . . , ξt−1, ξt, ξt+1, . . .)

where f is a measurable function. Suppose Eηt = 0 for all t. If
∑∞

t=1
‖ηt‖22r
t2

< ∞ for some r ≥ 1,

supt

∥∥∥ηt − E(ηt|F t+kt−k )
∥∥∥

2
= O(k−1/2−ε) for some ε > 0, and φ is of size − r

2r−1 , r ≥ 1 (or α is of size

− r
r−1 , r > 1), then

1

T

T∑
t=1

ηt →a.s. 0

as T →∞.

Proof. See McLeish (1975). �

We comment here that in although many processes we are interested in satisfy some strong

mixing conditions, there are some simple processes that are not strong mixing. For example, the

autoregressive process yt = 1
2yt−1 + εt where εt is a sequence of iid Bernoulli distributed random

variables.

We now turn to the case of martingale difference sequences.

Definition 2.21. Let {ξt} be a sequence of random variables defined on a probability space

(Ω,F ,P), {Ft} be a sequence of σ-algebras such that · · · ⊂ F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F and {ξt} be

adapted to {Ft} (i.e., ξt is Ft-measurable for each t). We call {(ξt,Ft)} a predictable sequence if

Xt is Ft−1 measurable for all t. We call {(ξt,Ft)} a martingale if E |ξt| <∞ and E(ξt|Ft−1) = ξt−1

a.s. for all t. We call {(ξt,Ft)} a martingale difference sequence if E |ξt| < ∞ and E(ξt|Ft−1) = 0

a.s. for all t.

Note that a martingale difference sequence is serially uncorrelated. Therefore, it is a concept

that lies between independence and uncorrelatedness.

Theorem 2.22. Let {(ξt,Ft)} be a martingale difference sequence. If

∞∑
t=1

E |ξt|2r

t1+r
<∞

for some r ≥ 1, then

1

T

T∑
t=1

ξt →a.s. 0.

Proof. See, e.g., White (2001, p. 60). �

Theorem 2.23. Let {(ξt,Ft)} be a martingale difference sequence. If

sup
t

E |ξt|2+δ <∞

for some δ > 0, then

1

T

T∑
t=1

ξt →a.s. 0.
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Proof. See, e.g., White (2001, p. 60). �

A concept that is easier to deal with than martingale, first introduced by McLeish (1975), is

mixingale, which may be viewed as the asymptotic analogue to martingales.

Definition 2.24. Let {ξt} be a sequence of random variables, and Ft a sequence of increasing sub-

σ-algebras. Let p ≥ 1. The sequence {ξt,Ft} is called an Lp-mixingale if there exists non-negative

sequences {ct} and {ψk} such that ψk → 0 as k →∞ and that for each t and k,

(a) ‖E(ξt|Ft−k)‖p ≤ ctψk;
(b) ‖ξt − E(ξt|Ft+k)‖p ≤ ctψk+1.

If ψk = O(k−a−ε) for some ε, we say that the sequence {ψk} is of size −a. Note that mixingales

are necessarily mean-zero. Usually we take ct = ‖ξt‖p and we can always make ψk non-increasing.

In the case where ξt is Ft-adapted, the condition (b) is automatically satisfied. If in addition ψk = 0

for all k, then {ξi} is a martingale difference sequence.

The following theorem is due to McLeish (1975).

Theorem 2.25. Let {ξt} be an L2-mixingale with mixingale numbers {ψk} of size − r
2 , r ≥ 1 and∑∞

t=1
c2t
t2
<∞. Then

1

T

T∑
t=1

ξt →a.s. 0.

Andrews (1988) obtains L1 and weak laws of large numbers for uniformly integrable L1-

mxingales without restrictions on the mixingale numbers.

2.2.2 Central Limit Theorems

We begin this section with the Lindeberg-Lévy Central Limit Theorem.

Theorem 2.26. Let ξ1, ξ2, . . . be a sequence of independent and identically distributed random

variables with mean µt and variance σ2
ξ . Then

1√
T

T∑
t=1

(ξt − µt)→d N(0, σ2
ξ ).

Proof. See, e.g., Shiryaev (1989). �

The following is the Lindeberg-Feller Central Limit Theorem.

Theorem 2.27. Let ξ1, ξ2, . . . be a sequence of independent random variables with means µ1, µ2, . . .

and variances σ2
1, σ

2
2, . . .. Let s2

T =
∑T

t=1 σ
2
t . If the Lindeberg condition that for any ε > 0,

1

s2
T

T∑
t=1

E
(
(ξt − µt)21{|ξt−µt|≥εsT }

)
→ 0

22



holds, then

1

sT

T∑
t=1

(ξt − µt)→d N(0, 1).

Proof. See, e.g., Shiryaev (1989). �

It is easy to show that the Lindeberg condition can be replaced by the stronger Lyapunov

condition

1

s2+δ
T

T∑
t=1

E |ξt − µt|2+δ → 0

for some δ > 0. For details, see, e.g., Shiryaev (1989, Section III.4).

Now we look at various dependent cases.

Theorem 2.28. Let {(ξt,Ft)} be a strictly stationary ergodic adapted L2-mixingale with ψk of size

−1. Then

σ̄2
T = Var

(
1

T

T∑
t=1

ξt

)
→ σ̄2 <∞

and

1√
T

T∑
t=1

ξt →d N(0, σ̄2).

Proof. See, e.g., White (2001, p. 125). �

Theorem 2.29. Let {ξt} be a sequence of random variables with µt = Eξt = 0 and σ2
t = Var(ξt).

Suppose

sup
t

E |ξt|r <∞

for some r ≥ 2, φ is of size − r
2(r−1) , r ≥ 2, or α is of size − r

r−2 , r > 2, and

σ̄2
T = Var

(
1

T

T∑
t=1

ξt

)
> δ > 0

for T large enough, then

1√
T

T∑
t=1

ξt − µt
σ̄T

→d N(0, 1).

The following theorem is cited from the online Encyclopedia of Mathematics article by Richard.

C. Bradley.

Theorem 2.30. Let {ξt} be a α-mixing strictly stationary sequence of random variables such that

Eξt = 0,Eξ2
t <∞, σ2

T = Var(
∑T

t=1 ξt)→∞ as T →∞. Then

1

σT

T∑
t=1

ξt →d N(0, 1)
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as T → ∞ if and only if { (
∑T
t=1 ξt)

2

σ2
T

} is uniformly integrable. If all of the above conditions hold,

then σ2
T = Th(T ) for some function h(T ) that is slow varying as T →∞.

Theorem 2.31. Let ξ1, ξ2, . . . be a martingale difference sequence such that Eξ2
t = σ2

t . If 1
T

∑T
t=1 ξ

2
t →p

σ2
ξ , and if the conditional Lindeberg condition that for any ε > 0,

1

T

T∑
t=1

E
(
ξ2
t 1{|ξt|≥ε

√
T}
∣∣∣Ft−1

)
→p 0

holds, then

1√
T

T∑
t=1

ξt →d N(0, σ2
ξ ).

The condition 1
T

∑T
t=1 ξ

2
t →p σ

2
ξ can be replace by 1

T

∑T
t=1 E(ξ2

t |Ft−1) →p σ
2
ξ . See Shiryaev

(1989, p. 543). The conditional Lindeberg condition can be replaced by any of the following three

conditions:

(a) The unconditional Lindeberg condition. For any ε > 0,

1

T

T∑
t=1

E
(
ξ2
t 1{|ξt|≥ε

√
T}
)
→ 0.

(b) The unconditional Lyapunov condition. There exists some δ > 0 such that for all t,

E |ξt|2+δ <∞.

(c) The conditional Lyapunov condition. There exists some δ > 0 such that for all t

E
(
|ξt|2+δ

∣∣∣Ft−1

)
<∞.

It is known that the conditional Lyapunov condition implies the unconditional Lyapunov con-

dition, which implies the unconditional Lindeberg condition, which in turn implies the conditional

Lindeberg condition. See Alj et al. (2014) for further references.

2.3 Estimation of the Mean of Weakly Stationary Time Series

In this section, we focus on the estimation of the mean of the weakly stationary time series. Suppose

we observe (y1, y2, . . . , yT ) from a weakly stationary time series (yt)t∈Z. The most natural estimator

for the mean µ = Eyt is the sample average

µ̂ =
1

T

T∑
t=1

yt.
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This estimator is unbiased, since Eµ̂ = 1/T
∑T

t=1 Eyt = µ. This estimator, under some regularity

conditions, is also consistent, i.e., µ̂ →p µ. In this case, we say that the series {yt} is ergodic for

the mean. Recall that XT →p X if and only if

lim
T→∞

P{ω ∈ Ω : |XT (ω)−X(ω)| > ε} = 0,

for any choice of ε > 0, where |·| is the Euclidean norm defined as the length of the vector considered.

In the case of scalars, |·| is just the absolute value. For a matrix A = [aij ], we use |A| to denote

the Frobenius norm |A| =
√∑

i

∑
j a

2
ij .

Theorem 2.32. Let (yt)t∈Z be a weakly stationary time series with mean µ and autocovariance

function γ(·). Let µ̂ = 1
T

∑T
t=1 yt. If

∑∞
k=1 |γ(k)| <∞, then

(a) limT→∞ TE(µ̂− µ)(µ̂− µ)′ =
∑∞

k=−∞ γ(k).

(b) µ̂→p µ as T →∞.

Proof.

TE(µ̂− µ)(µ̂− µ)′ =
1

T

T∑
t=1

T∑
s=1

E(yt − µ)(ys − µ)′

=
1

T

[
Tγ(0) + 2(T − 1)γ(1) + 2(T − 2)γ(2) + . . .+ 2γ(T − 1)

]
=

T−1∑
k=−(T−1)

(
1− |k|

T

)
γ(k).

Given
∑∞

k=1 |γ(k)| < ∞, by Kronecker’s Lemma,
∑T−1

k=−(T−1)
|k|
T γ(k) → 0. See Shiryaev (1989, p.

390). Therefore, TE(µ̂−µ)(µ̂−µ)′ →
∑∞

t=−∞ γ(k). As a consequence, E(µ̂−µ)(µ̂−µ)′ → 0. This

implies that µ̂→L2 µ, which in turn implies that µ̂→p µ. �

Note that µ̂ is said to converge in mean square to µ, or µ̂→L2 µ if and only if E |µ̂− µ|2 → 0.

It is a well known result in probability theory that convergence in mean square implies convergence

in probability due to Chebyshev’s inequality.

The asymptotic variance of the sample mean estimator is given by

Var(
√
T (µ̂− µ)) = TE(µ̂− µ)(µ̂− µ)′ →

∞∑
k=−∞

γ(k).

This limit is called the long-run variance of the series {yt}.
One may be further interested in the asymptotic distribution of µ̂−µ. However, the asymptotic

distribution can be obtained only with more assumptions on the structure of the time series, which

we shall not elaborate on at this moment. In the special case where the time series is Gaussian,√
T (µ̂−µ) = 1√

T

∑T
t=1(yt−µ) is Gaussian, and it converges in distribution to N

(
0,
∑∞

k=−∞ γ(k)
)
.

As we shall see in Chapter 4, if {yt} is a linear process, a central limit theorem holds for {yt}, and
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we also have
√
T (µ̂− µ) →d N

(
0,
∑∞

k=−∞ γ(k)
)
. Or one may impose regularity assumptions such

as ergodicity, mixing, or martingale assumptions to the time series so that a central limit theorem

in Section 2.2 holds.

2.4 Estimation of the Autocovariance Function of Weakly Stationary Time Se-

ries

With a sample (y1, y2, . . . , yT ) from a weakly stationary time series (yt)t∈Z, we may estimate the

autocovariance function γ(k) of the series by

γ̂(k) =
1

T − k

T∑
t=k+1

(yt − µ̂)(yt−k − µ̂)′

for 0 ≤ k ≤ T − 1, and γ̂(k) = γ̂(−k)′ for −(T − 1) ≤ k < 0, where µ̂ is the sample average

estimator studied in the previous section. Note that because of the existence of µ̂, this γ̂(k) is not

an unbiased estimator of γ(k).

We may also replace the denominator T − k in the above expression with T . The estimator is

then given by

γ̂(k) =
1

T

T∑
t=k+1

(yt − µ̂)(yt−k − µ̂)′.

Obviously the two estimators are asymptotically equivalent. In this section we shall use the latter

estimator.

In order to obtain the asymptotic properties of the autocovariance estimator, we need to look

at the 4-th moment of the process. We therefore define the following stationarity concept. In this

section we mainly follow Parzen (1957) and deal with the case in which (yt)t∈Z is a univariate

process. It is quite straightforward to extend the results to the multivariate case. We call a

process 4-th order weakly stationary if E |yt|4 < ∞ and that for any k1, k2, k3, P (k1, k2, k3) =

Eytyt+k1yt+k2yt+k3 is independent of t.

In particular, if yt is mean zero and Gaussian, then its fourth moment function can be expressed

as

PN(k1, k2, k3) = γ(k1)γ(k2 − k3) + γ(k2)γ(k3 − k1) + γ(k3)γ(k1 − k2).

by Isserlis’ theorem. Then

Q(k1, k2, k3) = P (k1, k2, k3)− PN(k1, k2, k3)

of a generic mean zero fourth order weakly stationary process {yt} measures the deviation of the

process from Gaussianity in terms of the fourth moment structure. The quantity Q coincide with

the so-called fourth cumulant of the process.

Theorem 2.33. Let {yt} be a fourth order weakly stationary time series with absolutely summable

autocovariance function γ(·) and absolutely summable fourth cumulant Q(k1, k2, k3). Let γ̂(k) be
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the estimator of γ(k). Then for any k, k1, k2,

Eγ̂(k)− γ(k) = O(T−1),

and

lim
T→∞

TCov(γ̂(k1), γ̂(k2))

=
∞∑

k=−∞
[Q (|k1| , k, k + |k2|) + γ(k)γ (k + |k2| − |k1|) + γ (k + |k2|)γ(k − |k1|)] .

Proof. Consider the case where k ≥ 0. Write

γ̂(k) =
1

T

T−k∑
t=1

(yt+k − µ+ µ− µ̂)(yt − µ+ µ− µ̂)

= D(k) +

(
1− k

T

)
γ(k) +R(k)

where

D(k) =
1

T

T−k∑
t=1

[(yt+k − µ)(yt − µ)− γ(k)]

and

R(k) =
1

T

T−k∑
t=1

(yt+k − µ)(µ− µ̂) +
1

T

T−k∑
t=1

(yt − µ)(µ− µ̂) +

(
1− k

T

)
(µ− µ̂)2.

We can show that for any k1 ≥ 0, k2 ≥ 0,

ED(k1)D(k2) =
1

T 2

T−k1∑
t1=1

T−k2∑
t2=1

[P̃ (t1 + k1, t1, t2 + k2, t2)− γ(k1)γ(k2)]

=
1

T 2

T−k1∑
t1=1

T−k2∑
t2=1

[Q(k1, t2 − t1, t2 − t1 + k2) + γ(t2 − t1)γ(t2 − t1 + k2 − k1)

+ γ(t2 − t1 + k2)γ(t2 − t1 − k1)]

=
1

T

T−1−k2∑
k=−(T−1−k1)

u(k, k1, k2)[Q(k1, k, k + k2) + γ(k)γ(k + k2 − k1)

+ γ(k + k2)γ(k − k1)]

where

u(k, k1, k2) =

1− max(k1,k2+k)
T , if k ≥ 0,

1− max(k1+|k|,k2)
T , if k < 0.
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Under the summability of the fourth cumulant, by Kronecker Lemma we have

lim
T→∞

TED(k1)D(k2) =
∞∑

k=−∞
[Q(k1, k, k + k2) + γ(k)γ(k + k2 − k1) + γ(k + k2)γ(k − k1)].

We can also show that

ER(k)2 ≤

(
9

T 2

T∑
t=1

T∑
s=1

|γ(t− s)|

)(
E(µ− µ̂)2

)
=

(
9

T

T=1∑
k=−T+1

(
1− k

T

)
|γ(k)|

)(
E(µ− µ̂)2

)
≤ CT−2

for some constant C under the absolute summability of γ(k).

The results then follows easily. �

Note that in the Gaussian case, since Q(k1, k2, k3) = 0 for all k1, k2, k3, we have

lim
T→∞

TCov(γ̂(k1), γ̂(k2)) =
∞∑

k=−∞
[γ(k)γ (k + |k2| − |k1|) + γ (k + |k2|)γ(k − |k1|)] .

The above theorem gives the asymptotic bias and variance of the estimator γ̂(k). It obviously

implies that γ̂(k) converges in mean square, and therefore in probability, to γ(k). We may also

obtain a central limit theorem for the D(k) part, and therefore establish that
√
T (γ̂(k)− γ(k))→d

N(0, V ) where V is given by the expression in the above theorem if we assume that {yt} satisfies

some strong mixing conditions with certain mixing rate. For details, see Section 2.2.2.

Absolute summability of the fourth cumulants holds trivially for Gaussian processes. Also,

it is known that absolute summability of the four cumulants holds for fourth order stationary

linear processes2 with absolutely summable coefficients and innovations whose fourth moments

exist (Andrews, 1991, p. 823). Absolute summability of the fourth cumulants also holds when

the process satisfy some α-mixing conditions. Andrews (1991) shows that if {Xt} is mean zero,

fourth order weakly stationary with supt E |Xt|4ν < ∞ for some ν > 1, and α-mixing with mixing

coefficients α(k) satisfying
∑∞

k=1 k
2α(k)

ν−1
ν <∞, then its forth cumulants are absolutely summable.

2See Chapter 4 for an introduction of linear processes.
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3 Spectral Analysis of Weakly Stationary Processes

3.1 Spectral Distributions and Spectral Densities

This chapter introduces the frequency domain analysis of time series. Although time series we

usually encounter in real-world applications are real-valued, in spectral analysis, it will be math-

ematically more convenient to consider them as complex-valued series. We therefore adapt a few

concepts we encountered earlier to processes on the complex field C. In this chapter we state results

for the univariate case. Their generalization to the vector process should be straightforward.

A complex-valued time series {Xt} is said to be weakly stationary if E |Xt|2 < ∞, and both

EXt and EXtX̄t−h are independent of t, where X̄t denotes the complex conjugate of Xt. The

autocovariance function γ(·) of a complex-valued weakly stationary time series {Xt} is defined to

be

γ(k) = E (Xt − EXt)E(Xt−h − EXt−h) = EXtX̄t−h − EXtEX̄t−h.

We have a theorem analogous to Theorem 2.7.

Theorem 3.1. A mapping γ : Z → C is the autocovariance function of a complex-valued weakly

stationary time series if and only if γ(k) = γ(−k) for any k ∈ Z and
∑n

r=1

∑n
s=1 arγ(tr− ts)ās ≥ 0

for any t1, . . . , tn ∈ Z, a1, . . . , an ∈ C and n ∈ N.

The following is the spectral characterization of the autocovariance function.

Theorem 3.2. A mapping γ : Z → C is the autocovariance function of a complex-valued weakly

stationary time series if and only if

γ(k) =

∫ π

−π
eiλkdF (λ), k ∈ Z

where F is a right-continuous, non-decreasing, bounded function on [−π, π] with F (−π) = 0.

In the above theorem, i =
√
−1. Note that by De Moivre’s theorem we have eiα = cosα+ i sinα

and e−iα = cosα− i sinα for any α ∈ R.

Proof. Sufficiency: It is easy to verify that γ(k) = γ(−k). Let a1, . . . , an ∈ C. Then

n∑
r=1

n∑
s=1

arγ(tr − ts)ās =

∫ π

−π

n∑
r,s=1

arāse
iλ(tr−ts)dF (λ)

=

∫ π

−π

∣∣∣∣∣
n∑
r=1

are
iλtr

∣∣∣∣∣
2

dF (λ) ≥ 0.

Then by the above theorem γ is an autocovariance function.

0 c© 2017-2021 by Bo Hu. All rights reserved.
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Necessity: Suppose γ is an autocovariance function. Define

fN (λ) =
1

2πN

N∑
r,s=1

e−iλrγ(r − s)eiλs

=
1

2π

∑
|k|<N

(
1− |k|

N

)
e−iλkγ(k)

on λ ∈ (−π, π] and 0 everywhere else. By positive definiteness of γ, we have fN (λ) ≥ 0 on (−π, π].

Define

FN (λ) =

∫ λ

−π
fN (ν)dν

for λ ∈ (−π, π], FN (λ) = 0 for λ ≤ −π, and FN (λ) = FN (π) for λ > π. Then it is easy to see that

∫ π

−π
eiλkdFN (λ) =


(

1− |k|N
)
γ(k), |k| < N,

0 |k| ≥ N.

Since {FN} is a sequence of distribution functions supported on [−π, π], and FN (π) = γ(0) for all

N , we have that {FN} is tight. It then follows from Shiryaev (1989, Theorem 1, p. 318) that that

there exists a subsequence {FNm} such that FNm →w F for some distribution function F where→w

denotes weak convergence of measures. Since the mapping λ 7→ eiλk is continuous and bounded,

this implies that

lim
m→∞

∫ π

−π
eiλkdFNm(λ) =

∫ π

−π
eiλkdF (λ).

However, the limit on the left-hand-side can only be γ(k). Therefore, we have

γ(k) =

∫ π

−π
eiλkdF (λ).

Obviously, F constructed in this way satisfies the required properties. �

We shall call F the spectral distribution function of γ or {Xt}. If F admits a derivative f such

that F (λ) =
∫ λ
−π f(ν)dν, we call f the spectral density of γ or {Xt}.

We note here that the spectral distribution F is uniquely determined by the autocovariance

function γ. This is because γ(k) =
∫ π
−π e

iλkdF (λ) holds for all k, and {eiλk}k∈Z serves as a set of

test functions that can be used to determine the values of F . See Brockwell and Davis (1991, p.

119) for details.

Let {Xt} be a weakly stationary time series with absolutely summable autocovariance function

γ(·). Let f : (−π, π]→ R be defined by

f(λ) =
1

2π

∞∑
k=−∞

γ(k)e−iλk.
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Then we have ∫ π

−π
eiλkf(λ)dλ =

∫ π

−π

1

2π

∞∑
m=−∞

γ(k)eiλ(k−m)dλ

=
1

2π

∞∑
m=−∞

γ(k)

∫ π

−π
eiλ(k−m)dλ

= γ(k)

where the interchange of the summation and integration is guaranteed by Fubini’s theorem since∫ π
−π

1
2π

∑∞
m=−∞

∣∣γ(k)eiλ(k−m)
∣∣ dλ < ∞ under the absolute summability assumption of γ. In view

of the above theorem and that 0 ≤ fN (λ)→ f(λ), we have that

Theorem 3.3. An absolutely summable function γ : Z → C is the autocovariance function of a

weakly stationary complex-valued time series if and only if it has spectral density given by

f(λ) =
1

2π

∞∑
k=−∞

γ(k)e−iλk ≥ 0, λ ∈ (−π, π].

For any real weakly stationary scalar process with absolutely summable autocovariances, since

γ(−k) = γ(k), we have that f(λ) is real, f(λ) = f(−λ), and

f(λ) =
1

2π

(
γ(0) + 2

∞∑
k=1

γ(k) cos(λk)

)
.

Actually we may easily derive the following result.

Theorem 3.4. A function f : (−π, π]→ R is the spectral density of a real-valued weakly stationary

process if and only if f(λ) = f(−λ), f(λ) ≥ 0 and
∫ π
−π f(λ)dλ <∞.

In the end we relate the spectral density with the bounds of eigenvalues of the covariance matrix

of (X1, . . . , Xn) when {Xt} is a weakly stationary process.

Theorem 3.5. Let {Xt} be a weakly stationary process with spectral density f such that 0 < m ≤
f(λ) ≤ M < ∞ for all λ ∈ (−π, π]. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the covariance

matrix Γn of (X1, X2, . . . , Xn)′. Then

2πm ≤ λ1 ≤ λn ≤ 2πM.

Proof. Supoose v = (v1, · · · , vn)′ is a normalized eigenvector of Γn with eigenvalue λ. Let the

autocovariance function of {Xt} be γ. Then we have

λ = v′Γnv

=

n∑
j=1

n∑
k=1

vjvkγ(j − k)

31



=

n∑
j=1

n∑
k=1

vjvk

∫ π

−π
e−i(j−k)λf(λ)dλ

≤ 2πM

n∑
j=1

v2
j .

This implies that λ ≤ 2πM . Similarly we may show that λ ≥ 2πm. �

3.2 Spectral Representation

To obtain the spectral representation of a weakly stationary process, we first introduce some con-

cepts and define a stochastic integral. For more details, readers may refer to Shiryaev (1989, Section

VI.2).

Throughout this section, let (Ω,F ,P) be a probability space, and (E, E) be a measurable space.

Definition 3.6. A complex-valued function Z(∆) = Z(ω; ∆) defined for ω ∈ Ω,∆ ∈ E is called a

stochastic measure if

(a) E |Z(∆)|2 <∞ for all ∆ ∈ E ;

(b) For every disjoint ∆1,∆2 ∈ E , Z(∆1 ∪∆2) = Z(∆1) + Z(∆2);

(c) For all disjoint ∆1,∆2, . . . in E , we have limn→∞ E |Z(
⋃∞
i=1 ∆i)−

∑n
i=1 Z(∆i)|2 = 0.

Note that the measurability of Z(·; ∆) for all ∆ ∈ E is implicitly required by the statement of

the definition.

Definition 3.7. A stochastic measure Z is called orthogonal if for every disjoint ∆1,∆2 ∈ E we

have EZ(∆1)Z(∆2) = 0. For an orthogonal stochastic measure Z, we call the function m defined

by m(∆) = E |Z(∆)|2 ,∆ ∈ E the structure function of Z.

It can be shown that the structure function m is a finite measure on (E, E).

Now we define integral with respect to orthogonal stochastic measures. Let L2 = L2(E, E ,m)

be the Hilbert space of complex-valued square integrable functions on E with inner product given

by

〈f, g〉L2 =

∫
E
fgdm

and H2 = H2(Ω,F ,P) be the space of complex-valued square integrable random variables on Ω

with inner product given by

〈ξ, η〉H2 = Eξη.

Norms are defined in the usual way.

Now for simple function f =
∑n

i=1 si1∆i ,∆i ∈ E , define the integral with respect to an orthog-

onal stochastic integral Z by ∫
Ω
fdZ =

n∑
i=1

siZ(∆i).
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It is easy to verify that for simple f and g, we have〈∫
Ω
fdZ,

∫
Ω
gdZ

〉
H2

= 〈f, g〉L2 (3.1)

and ∥∥∥∥∫
Ω
fdZ

∥∥∥∥2

= ‖f‖2 =

∫
E
|f |2 dm. (3.2)

Now we may approximate any f ∈ L2 by simple {fn} in L2. Then for n,m → 0, we have

‖fn − fm‖ → 0, which by the above equivalence implies that
∥∥∫ fndZ −

∫
fmdZ

∥∥ → 0. Since

{
∫
fndZ} is Cauchy, by completeness of H2, there exists a unique (P-a.s.) random variable that is

the limit of {
∫
fndZ}. We define this limit to be the stochastic integral of f with respect to Z, and

denote it by
∫

Ω fdZ.

Similarly one can easily extend the equations (3.1) and (3.2) to general f and g in L2. This

establishes the isomorphism between L2 and H2 defined by f 7→
∫

Ω fdZ. Linearity of the integral

can also be shown easily.

We now associate an orthogonal stochastic measure with a stochastic process which has orthog-

onal increments.

Definition 3.8. A set of complex-valued random variables {Zλ}, λ ∈ R, is called a stochastic

process with orthogonal increments if

(a) E |Zλ|2 <∞ for all λ ∈ R;

(b) For every λn ↓ λ ∈ R, E |Zλ − Zλn |
2 → 0 as n→∞;

(c) E(Zλ4 − Zλ3)(Zλ2 − Zλ1) = 0 for any λ1 < λ2 < λ3 < λ4 ∈ R.

Now consider the case where E = R and E = B(R). Let Z = Z(∆),∆ ∈ B(R) be an orthogonal

stochastic measure with structure function m = m(∆), and the distribution function F (λ) =

m(−∞, λ]. Define the stochastic process {Zλ} by Zλ = Z((−∞, λ]). It is easy to verify that {Zλ}
is a stochastic process with orthogonal increments. On the other hand, if {Zλ} is a stochastic

process with orthogonal increments such that E |Zλ|2 = F (λ), F (−∞) = 0, F (∞) < ∞, then we

can verify that Z defined by Z((a, b]) = Zb − Za (and extended to all B(R)-measurable sets)

is an orthogonal stochastic measure. We therefore have established a one-to-one correspondence

between an orthogonal stochastic measure and a stochastic process with orthogonal increments,

and we may now define the stochastic integral
∫
R f(λ)dZλ with respect to a process {Zλ} with

orthogonal increments by the value of the stochastic integral
∫

Ω fdZ where Z is the corresponding

orthogonal stochastic measure associated with {Zλ}.

Now we obtain the spectral representation of weakly stationary processes. Let {ξt} be a weakly

stationary process with spectral distribution function F . One may check that the mapping U given

by

U

 n∑
j=1

ajξtj

 =
n∑
j=1

aje
itj ·
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defines an isomorphism between
∨∞
t=−∞ ξt and

∨∞
t=−∞ et where et(λ) = eitλ, λ ∈ (−π, π], and

∨
denotes the span. By a usual argument we can extend this isomorphism uniquely to an isomorphism

between the closure of the two spanned spaces, i.e., between
∨∞
t=−∞ ξt and L2((−π, π],B((−π, π]), F ).

We therefore have the following result established:

Theorem 3.9. Let {ξt} be a mean-zero weakly stationary process with spectral distribution function

F . Then there exists a unique isomorphism U between
∨∞
t=−∞ ξt and L2((−π, π],B((−π, π]), F )

such that

(Uξt) (λ) = eitλ, λ ∈ (−π, π]

for all t ∈ Z.

We define the set function Z(∆) = U−11∆ for ∆ ∈ B((−π, π]). Note that E |Z(∆)|2 = ‖1∆‖ =

F (∆). We can easily verify that Z thus defined is an orthogonal stochastic measure. Also we

may easily show that for simple f ∈ L2((−π, π],B((−π, π]), F ),
∫
fdZ = U−1f . A usual argument

extends this equality for general f ∈ L2((−π, π],B((−π, π]), F ). Now take f(λ) = eitλ, in view of

Theorem 3.9, we have the following spectral representation result.

Theorem 3.10. Let {ξt} be a mean-zero weakly stationary process with spectral distribution func-

tion F . Then there exists an orthogonal stochastic measure Z = Z(∆),∆ ∈ B((−π, π]) with struc-

ture function F such that for all t ∈ Z,

ξt =

∫ π

−π
eitλdZ(λ) P-a.s..

We make the following remarks regarding this theorem.

(a) The associated stochastic process with orthogonal increments can obviously be defined by

Zλ = U−11(−π,λ]. So obviously the above theorem can also be stated in the form of stochastic

integral with respect to the process {Zλ}.
(b) It can be shown that if ξt =

∫
eitλdZλ,P-a.s., and ξt =

∫
eitλdYλ,P-a.s. for two stochastic

processes Zλ and Yλ with orthogonal increments, then P(Zλ = Yλ) = 1 for each λ ∈ [−π, π].

(c) If F has a discontinuity (jump) at λ = λ0, then ξt =
∫

[−π,π]\{λ0} e
itλdZ(λ)+eitλ0Z({λ0}). This

implies that there is a deterministic sinusoidal component with frequency λ0 in the time series.

For the general case, we may think that the spectral representation decomposes the time series

{ξt} into (a continuous) “sum” of sine and cosine components with different frequencies λ.

The spectral density f(λ) of the process {ξt}, if exists, may be viewed as the variance of

|dZ(λ)|, which gives the “magnitude”, or “significance”, or “importance” of the components

corresponding to different frequencies. In particular, we have that γ(0) =
∫ π
−π f(λ)dλ, i.e.,

the variance of {ξt} is the integral of contributions f(λ) from the individual frequencies.

Apparently, if {ξn} is a real process with the representation
∫ π
−π e

iλtdZ, then we may represent

ξt as

ξt =

∫ π

−π
cos(λt)dZ1(λ) +

∫ π

−π
sin(λt)dZ2(λ) a.s.
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where Z = Z1 + iZ2, Z1 and Z2 real valued.

Theorem 3.11. Let {ξt} be weakly stationary with spectral representation ξt =
∫ π
−π e

iλtdZ(λ)

and spectral distribution F . Let H2 =
∨∞
t=−∞ ξt. If η ∈ H2, then there exists a function ϕ ∈

L2((−π, π],B((−π, π]), F ) such that

η =

∫ π

−π
ϕ(λ)dZ(λ) a.s..

If there exists {hj}∞j=−∞ such that the sequence ηt =
∑∞

j=−∞ hjξt−j is well defined in mean square,

then

ηt =

∫ π

−π
eiλth(e−iλ)dZ(λ) a.s.

where h(z) =
∑∞

j=−∞ hjz
j.

Proof. See Shiryaev (1989, p. 433). �

The Fourier transform h(e−iλ) is called the transfer function associated with the linear filter

h(L).

Theorem 3.12. Let {ηt} be a weakly stationary time series with spectral density fη(λ). Then

(possibly at the expense of enlarging the original probability space) we can find a white noise {εt}
and a linear filter h(z) =

∑∞
j=−∞ hjz

j such that ηt = h(L)εt =
∑∞

j=−∞ hjεt−j.

In particular, if fη(λ) > 0 almost everywhere with respect to the Lebesgue measure and fη(λ) =
1

2π

∣∣h(e−iλ)
∣∣ for some h(z) =

∑∞
j=0 hjz

j ,
∑∞

j=0 |hj |
2 < ∞, then ηt =

∑∞
j=0 hjεt−j for some white

noise {εt} (on the same probability space).

Proof. See Shiryaev (1989, p. 435). �

In the end, we use spectral representation to prove some ergodic theorems for weakly stationary

time series.

Theorem 3.13. Let {ξt} be a weakly stationary time series with zero mean, autocovariance function

γ(·), spectral distribution F and spectral representation ξt =
∫ π
−π e

itλdZ(λ). Then

1

T

T∑
t=1

ξt →L2 Z({0})

and

1

T

T∑
k=1

γ(k)→ F ({0}).

35



Proof. Since 1
T

∑T
t=1 e

itλ → 1{0}(λ) in L2((−π, π],B((−π, π]), F ), and
∣∣∣ 1
T

∑T
t=1 e

itλ
∣∣∣ ≤ 1 for all T ,

therefore we have

1

T

T∑
t=1

ξt =
1

T

∫ π

−π

T−1∑
t=0

eitλdZ(λ)→L2(P)

∫ π

−π
1{0}(λ)dZ(λ) = Z({0}).

We can prove the result for autocovariance function similarly. �

Note that if the spectral distribution F is continuous at 0, then F ({0}) = Z({0}) = 0, and

therefore the two limits are zero. A corollary of the above theorem is that 1
T

∑T
k=1 γ(k) → 0 is a

sufficient and necessary condition for 1
T

∑T
t=1 ξt →L2 0. If Eξt = µ, then 1

T

∑T
k=1 γ(k) → 0 or the

spectral distribution F continuous at 0 is a sufficient and necessary condition for 1
T

∑T
t=1 ξt →L2 µ.

This gives a condition by which the sample mean estimator is consistent (in mean square, and

therefore in probability) for the true mean.

Also note that if Eξt = 0, and Z({0}) 6= 0, then there is a random variable ζ = Z({0}) such

that ξt = ζ + ηt, ηt =
∫ π
−π e

iλtZ̃(dλ), Z̃({0}) = 0, and 1
T

∑T
t=1 ξt →L2 ζ as T →∞.

3.3 Estimating the Spectral Densities

In this section we first introduce the periodogram and its properties. Our spectral density estimator

will be based on smoothing the periodogram.

Let X = (X1, X2, . . . , XT ) be the data. We may view any realization of X as elements

in the space CT over the field of complex numbers. Consider the vector of the form vj =
1√
T

(eiωj , e2iωj , . . . , eiTωj )′, j ∈ Z. Let ωj = 2πj
T and JT = {j ∈ Z| − π < ωj ≤ π}. Then {vj}j∈JT is

an orthonormal basis of C, and we therefore may express any x = (x1, . . . , xT ) in CT as

x =
∑
j∈JT

ajvj

where

aj = 〈x, vj〉 =
1√
T

T∑
t=1

xje
−itωj .

The mapping from x to {aj}j∈JT is called the discrete Fourier transformation of x.

Definition 3.14. Let x ∈ CT and {aj}j∈JT be the discrete Fourier transformation of x. The

periodogram I(ωj) of x at frequency ωj = 2πj
T , j ∈ JT is defined to be

I(ωj) = |aj |2 =
1

T

∣∣∣∣∣
T∑
t=1

xte
−itωj

∣∣∣∣∣
2

.

Since ‖x‖2 =
∑

j∈JT I(ωj), the decomposition can be viewed as a form of “variance decompo-

sition analysis”.
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Theorem 3.15. Let x ∈ CT and I(ωj) its periodogram. Then for any ωj 6= 0, j ∈ JT ,

I(ωj) =
T−1∑

k=−T+1

γx(k)e−ikωj ,

where γx(k) = 1
T

∑T−k
t=1 (xt+k − m)(xt −m) for k ≥ 0, m = 1

T

∑T
t=1 xt, and γx(k) = γx(−k) for

k < 0.

Proof. Since
∑T

t=1 e
itωj =

∑T
t=1 e

−itωj = 0 for any ωj 6= 0, we have

I(ωj) =
1

T

(
T∑
s=1

(xs −m) e−isωj

)(
T∑
t=1

(xt −m)eitωj

)

=
1

T

∑
1≤s,t≤t

(xs −m)(xt −m)e−i(s−t)ωj

=

T−1∑
k=−T+1

γx(k)e−ikωj .

�

The similarity between the above equation and the representation of the spectral density in

Theorem 3.3 hints that we may construct an estimator of the spectral density of a weakly sta-

tionary process with absolutely summable autocovariance function based on the periodogram, i.e.,

the discrete Fourier transformation of the data. Since the discrete Fourier transformation defines

the periodogram for discrete frequencies, in order to estimate spectral density, we extend the peri-

odogram for all frequencies in (−π, π].

Let X1, X2, . . . , XT be a real time series. The periodogram IT (ω), ω ∈ (−π, π] is defined as

follows: Let

IT (ω) =


T

∣∣∣∣∣ 1

T

T∑
t=1

Xt

∣∣∣∣∣
2

, if ω = 0,

1

T

T−1∑
k=−T+1

T−|k|∑
t=1

(
Xt+|k| −

1

T

T∑
t=1

Xt

)(
Xt −

1

T

T∑
t=1

Xt

)
e−ikω, if ω = 2πj

T , j ∈ JT .

Then define

IT (ω) =

IT (2πj
T ), if π(2j−1)

T < ω ≤ π(2j+1)
T , ω ∈ [0, π]

IT (−ω), if ω ∈ (−π, 0).

Note that we extend IT (ω) in a piece-wise constant way. We have the following results.

Theorem 3.16. Let {Xt}Tt=1 be a (real) weakly stationary time series with mean µ, absolutely

summable autocovariance function γ(·), spectral density f(·), and periodogram IT (ω), ω ∈ (−π, π].
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Then

EIT (0)− Tµ2 → 2πf(0)

and

EIT (ω)→ 2πf(ω) if ω 6= 0

as T →∞.

In addition, if µ = 0, then EIT (ω) converges uniformly to 2πf(ω) on (−π, π].

Proof. Write g(T, ω) to be the multiple of 2π
T closest to ω. Note that g(T, ω)→ ω as T →∞. Also

note that for ω = 2πj
T , j ∈ JT , IT (ω) can be equivalently written as

1

T

T−1∑
k=−T+1

T−|k|∑
t=1

(
Xt+|k| − µ

)
(Xt − µ) .

The results then follows easily. Uniform convergence follows from the uniform convergence of

g(T, ω) and the uniform continuity of f(·). �

The above theorem suggests that IT (ω)
2π (with small modification at w = 0) may serve as an

asymptotically unbiased estimator of the spectral density f . However, as the next theorem shows,

it is not a consistent estimator.

Theorem 3.17. Let Xt ∼ i.i.d.(0, σ2) be a real sequence of random variables, and let f(λ) = σ2

2π

be its spectral density and IT (·) be its periodogram as defined above. Then for any 0 < λ1 < λ2 <

. . . < λn < π, 1
2( IT (λ1)

2πf(λ1) ,
IT (λ2))
2πf(λ2) , . . . ,

IT (λn)
2πf(λn)) converges in distribution to a vector of independent

χ2
2-distributed random variables.

Proof. For λ > 0, we have

IT (λ) =

∣∣∣∣∣ 1√
T

T∑
t=1

Xte
−itg(T,λ)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1√
T

T∑
t=1

Xt cos(tg(T, λ))

∣∣∣∣∣
2

+

∣∣∣∣∣ 1√
T

T∑
t=1

Xt sin(tg(T, λ))

∣∣∣∣∣
2

.

We therefore consider the joint distribution of

ZT =

{ 1√
T

T∑
t=1

Xt cos(tg(T, λj))

}n
j=1

,

{
1√
T

T∑
t=1

Xt sin(tg(T, λj))

}n
j=1

 .

We first look at YT = 1√
T

∑T
t=1Xt cos(tg(T, λj)). Note that Var(YT ) = σ2

2 since Xt is i.i.d. and∑T
t=1 cos2(t(g(T, λj))) =

∑T
t=1

(
eitg(T,λj)+e−itg(T,λj)

2

)2
=
∑T

t=1
e2itg(T,λj)+e−2itg(T,λj)+2

4 = T
2 . Also, the

Lindeberg condition holds by

lim
T→∞

T∑
t=1

E

[
1√
T

T∑
t=1

Xt cos(tg(T, λj))

]2

1{∣∣∣ 1√
T
Xt cos(tg(T,λj))

∣∣∣>ε}
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≤ lim
T→∞

EX2
t 1{|Xt|}>ε

√
T = 0.

Therefore a central limit theorem holds for YT and YT →d N(0, σ
2

2 ). We can follow similar proce-

dures and use the Cramer-Wold device to show that ZT →d N(0, σ
2

2 I2n). The results then follows

immediately. �

The above theorem shows that even for simple processes, IT (λ)
2π = 1

2π

∑T−1
k=−T+1 γ̂(k)e−iλk con-

verges to some non-degenerate random variables instead of the true spectral density f(λ). There-

fore, IT (λ)
2π is not a consistent estimator of f(λ). The result can be extended to cases where Xt is

not necessarily i.i.d., but a (possibly dependent and heterogeneous) sequence such that a central

limit theorem holds for 1√
T

∑T
t=1Xte

−itg(T,λj). This holds when the process {Xt} satisfies some

mixing conditions, mixingale conditions, or martingale conditions. See Section 2.2.2 for details.

To improve the estimation performance, we need to smooth the periodogram. In the following

we state a theorem from Parzen (1957). For properly chosen bT , which is a function of the sample

size T , and function w(·), we define the estimator of spectral density by

f̂(λ) =
1

2π

∑
|k|<T

e−ikλw(bTk)γ̂(k). (3.3)

Theorem 3.18. Let Xt be a fourth-order stationary time series, γ(·) be its autocovariance function,

and f(·) be its spectral density. Let f be estimated by f̂ as in (3.3). Suppose that for some

q > 0,
∑∞

k=−∞ |k|
q |γ(k)| < ∞,

∑∞
r=−∞

∑∞
s=−∞

∑∞
t=−∞ |Q(r, s, t)| where Q(r, s, t) is the joint

cumulant of (X0, Xr, Xs, Xt), w : R→ R+ is an even, bounded, square integrable function such that

w(0) = 1 and that for every b and T we have b
∑
|k|<T w(bk) ≤ C(bT )1/2−ε for some ε > 0. Suppose

that there is a largest positive number r (could be infinite, meaning that the required condition

holds for all positive number r) such that w(r) = limz→0
1−w(z)
|z|r is finite and non-zero and let

q ≤ r. Let bT be a sequence such that bT → 0, bTT → ∞ and 0 < limT→∞ b
1+2q
T T < ∞. Let

f (q)(λ) = 1
2π

∑∞
k=−∞ |k|

q γ(k)e−iλk. Then we have that

lim
T→∞

b−qT

∣∣∣Ef̂(λ)− f(λ)
∣∣∣ =

C
∣∣w(r)f (r)(λ)

∣∣ , if q = r,

0, if q < r,

and that

lim
T→∞

bTTCov(f̂(λ1), f̂(λ2)) =


0, if λ1 6= ±λ2,

f(λ1)2
∫∞
−∞w

2(x)dx, if λ1 = ±λ2 6= 0,

2f(λ1)2
∫∞
−∞w

2(x)dx, if λ1 = λ2 = 0.

Proof. The proof here mainly follows Parzen (1957) and Hannan (1970, p. 280, Theorem 9). We
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cite some of the results from Theorem 2.33 in the following. For k ≥ 0, we can write

γ̂(k) =
1

T

T−k∑
t=1

(yt+k − µ+ µ− µ̂)(yt − µ+ µ− µ̂)

= D(k) +

(
1− k

T

)
γ(k) +R(k)

where

D(k) =
1

T

T−k∑
t=1

[(yt+k − µ)(yt − µ)− γ(k)]

and

R(k) =
1

T

T−k∑
t=1

(yt+k − µ)(µ− µ̂) +
1

T

T−k∑
t=1

(yt − µ)(µ− µ̂) +

(
1− k

T

)
(µ− µ̂)2.

We have that ER(k)2 ≤ CT−2 for all k. Also, we have that for k1, k2 ≥ 0,

ED(k1)D(k2) =
1

T

T−1−k2∑
k=−(T−1−k1)

u(k, k1, k2)[Q(k1, k, k + k2) + γ(k)γ(k + k2 − k1)

+ γ(k + k2)γ(k − k1)]

where

u(k, k1, k2) =

1− max(k1,k2+k)
T , if k ≥ 0,

1− max(k1+|k|,k2)
T , if k < 0.

For convenience, we write

ED(k1)D(k2) =
1

T

∞∑
k=−∞

u(k, k1, k2)[Q(k1, k, k + k2) + γ(k)γ(k + k2 − k1)

+ γ(k + k2)γ(k − k1)]

where

u(k, k1, k2) =



0, if k > T − 1− k2,

1− max(k1,k2+k)
T , if 0 ≤ k ≤ T − 1− k2,

1− max(k1+|k|,k2)
T , if − (T − 1− k1) < k < 0,

0, if k ≤ −(T − 1− k1).

Now we proceed to prove the theorem. First, by Minkowski inequality, we have that

lim
T→∞

bTTE

∣∣∣∣∣∣
∑
|k|<T

e−iλkw(bTk)R(k)

∣∣∣∣∣∣
2
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≤ lim
T→∞

bTT

∑
|k|<T

(
E
∣∣∣e−iλkw(bTk)R(k)

∣∣∣2)1/2
2

≤ lim
T→∞

bTT

∑
|k|<T

|w(bTk)|
(
ER(k)2

)1/22

≤ lim
T→∞

C(bTT )−2ε = 0.

Note that the convergence is uniformly in λ.

Next, write

b−qT (Ef̂(λ)− f(λ)) = R1 +R2 +R3 +B

where

R1 =
b−qT
2π

∑
|k|<T

e−iλkw(bTk)R(k),

R2 = −
b−qT
2πT

∑
|k|<T

e−iλk |k|w(bTk)γ(k),

R3 = −
b−qT
2π

∑
|k|≥T

e−iλkγ(k),

and

B = −
b−qT
2π

∑
|k|<T

e−iλk(1− w(bTk))γ(k).

By what we have just shown, we see that R1 →L2 0 uniformly in λ. Since w is bounded, if q ≥ 1,

then

|R2| ≤
C

2πTbqT

∑
|k|<T

|k| |γ(k)| ≤ C

2πTbqT

∑
|k|<T

|k|q |γ(k)| → 0.

If q < 1, then

|R2| =
C

2π(bTT )q

∑
|k|<T

(
|k|
T

)1−q
|k|q |γ(k)| ≤ C

2π(bTT )q

∑
|k|<T

|k|q |γ(k)| → 0.

Therefore R2 → 0 uniformly in λ. Write

|R3| =
1

2π(bTT )q

∑
|k|≥T

(
T

|k|

)q
|k|q |γ(k)| .

Since T
|k| → 1, R3 → 0 uniformly in λ.
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For the essential bias term B, note that

B = − 1

2π

∑
|k|<T

(bT |k|)r−q
(

1− w(bTk)

|bTk|r
)
|k|q γ(k)e−iλk,

it is then easy to see that

lim
T→∞

|B| =

C
∣∣w(r)f (r)(λ)

∣∣ , if q = r,

0, if q < r

uniformly in λ. We have thus established that

lim
T→∞

b−qT

∣∣∣Ef̂(λ)− f(λ)
∣∣∣ =

C
∣∣w(r)f (r)(λ)

∣∣ , if q = r,

0, if q < r.

Next, for non-negative λ1 and λ2,

lim
T→∞

bTTCov(f̂(λ1), f̂(λ2))

= lim
T→∞

bTT

4π2
E

∑
|k|<T

e−iλ1kw(bTk)D(k)

∑
|k|<T

e−iλ2kw(bTk)D(k)


= lim
T→∞

bTT

4π2

T−1∑
k1=−(T−1)

T−1∑
k2=−(T−1)

e−iλ1k1e−iλ2k2w(bTk1)w(bTk2)ED(k1)D(k2)

= lim
T→∞

bT
4π2

T−1∑
k1=−(T−1)

T−1∑
k2=−(T−1)

∞∑
k=−∞

e−iλ1k1e−iλ2k2w(bTk1)w(bTk2)

· u(k, |k1| , |k2|)[Q(|k1| , k, k + |k2|) + γ(k)γ(k + |k2| − |k1|) + γ(k + |k2|)γ(k − |k1|)].

Since the sine and cosine functions, w(·) and u(·, ·, ·) are bounded, and that Q(r, s, t) is summable,

we may ignore the term Q(k1, k, k + k2) in the above expression. Also we change z for |k1| − |k2|
and rewrite the second part as

lim
T→∞

bTTCov(f̂(λ1), f̂(λ2))

= lim
T→∞

bT
4π2

T−1∑
z=−2(T−1)

T−1∑
k2=−(T−1)

∞∑
k=−∞

e−iλ1(z+|k2|)e−iλ2k2w(bT (z + |k2|))w(bTk2)

·
[
u(k, |z + |k2|| , |k2|) + u(k − |k2| , |z + |k2|| , |k2|)

][
γ(k)γ(k − z)

]
= lim
T→∞

1

4π2

T−1∑
z=−2(T−1)

∞∑
k=−∞

γ(k)γ(k − z)e−iλ1z
T−1∑

k2=−(T−1)

e−iλ1|k2|e−iλ2k2

· bTw(bT (z + |k2|))w(bTk2)u∗(k, k2, z).
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where

u∗(k, k2, z) = u(k, |z + |k2|| , |k2|) + u(k − |k2| , |z + |k2|| , |k2|).

Note that limT→∞ u
∗(k, k2, z) = 2.

Let

L(z, k, k2) = e−iλ1|k2|e−iλ2k2bTw(bT (z + |k2|))w(bTk2)u2(k, k2, z).

Note that  T−1∑
k2=−(T−1)

bTw(bT (z + |k2|))w(bTk2)

2

≤

 T−1∑
k2=−(T−1)

w2(bT (z + |k2|))bT

 T−1∑
k2=−(T−1)

w2(bTk2)bT


≤

 ∞∑
k2=−∞

w2(bTk2)bT

2

=

(∫ ∞
−∞

w2(x)dx

)2

.

Then by dominate convergence theorem,
∑
L(z, k, k2) converges uniformly in z, k. To evaluate the

value of this sum, we write limT→∞
∑T−1

k2=−(T−1) L(z, k, k2) as

lim
T→∞

T−1∑
k2=1

(e−i(λ2−λ1)k2 + e−i(λ1+λ2)k2)bTw(bT (z + k2))w(bTk2)u2(k, k2, z)

= lim
T→∞

2

∫ bTT

0
(e
−iλ2−λ1

bT
x

+ e
−iλ2+λ1

bT
x
)w2(x)dx

Recall that we consider the case when λ1 ≥ 0 and λ2 ≥ 0. By Riemann-Lebesgue Lemma, if

λ1 6= λ2, the above limit is zero. If λ1 = λ2 6= 0, the above limit is
∫∞
−∞w

2(x)dfx. If λ1 = λ2 = 0,

the above limit is 2
∫∞
−∞w

2(x)dx.

Noting that 1
2π

∑∞
k=−∞ e

−iλ1kγ(k) = f(λ1), we have that

lim
T→∞

1

4π2

T−1∑
z=−2(T−1)

∞∑
k=−∞

γ(k)γ(k − z)e−iλ1z
T−1∑

k2=−(T−1)

e−iλ1|k2|e−iλ2k2

· bTw(bT (z + |k2|))w(bTk2)u∗(k, k2, z)

= lim
T→∞

T−1∑
z=−2(T−1)

∞∑
k=−∞

e−iλ1kγ(k)e−iλ1(z−k)γ(k − z)
T−1∑

k2=−(T−1)

e−iλ1|k2|e−iλ2k2

· bTw(bT (z + |k2|))w(bTk2)u∗(k, k2, z)

=Cf(λ1)2

∫ ∞
−∞

w2(x)dx
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where

C =


0, if λ1 6= λ2,

1, if λ1 = λ2 6= 0,

2, if λ1 = λ2 = 0.

Note that we derive the above result in the case when both λ1 and λ2 are non-negative. Given that

f(λ) is symmetric, it is easy to adapt the results to general λ1, λ2. �

We make the following remarks regarding the above theorem.

(a) If we redefine the periodogram IT (ω)

IT (ω) =

T−1∑
k=−T+1

e−ikωγ̂(k)

so that it is not piece-wise constant anymore, then we have

γ̂(k) =
1

2π

∫ π

−π
eikωIT (ω)dω.

Let

WT (ω) =
1

2π

∑
|k|<T

w(bTk)e−ikω.

Then it is easy to verify that

f̂(λ) =
1

2π

∫ π

−π
WT (λ− ω)IT (ω)dw.

(b) We call w(·) the lag window of the spectral density estimator and call WN (·) the spectral

window. The following are a list of popular window functions.

(1) The rectangular or truncated window. The lag window function is given by

w(x) =

1, if |x| ≤ 1,

0, otherwise.

For this window, we have

WT (ω) =
1

2π

sin
(

1
bT

+ 1
2

)
ω

sin 1
2ω

,

which is the Dirichlet kernel.
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(2) The Bartlett window or the triangular window. The lag window function is given by

w(x) =

1− |x| , if |x| ≤ 1,

0, otherwise.

For this window, we have

WT (ω) =
bT
2π

sin2 ω
2bT

sin2 ω
2

=
bT
2π

1− cos ω
bT

1− cosω
,

which is the Fejér kernel.

(3) The Daniell window. The lag window function is given by

w(x) =

 sinπx
πx , if |x| ≤ 1

0, otherwise.

For this window, we have

WT (x) =

 1
2πbT

, if |ω| ≤ bTπ,

0, otherwise.

(4) The Blackman-Tukey window. The lag window function is given by

w(x) =

1− 2a+ 2a cosx, if |x| ≤ 1,

0, otherwise

for some a. For this window we have

WT (ω) = aD(ω − bTπ) + (1− 2a)D(ω) + aD(ω + bTπ)

where D is the Dirichlet kernel. When a = 0.25, this window function is called the

Tukey-Hanning window, and when a = 0.23, this window function is called the Tukey-

Hamming window.

(5) The Parzen window. The lag window function is given by

w(x) =


1− 6 |x|2 + 6 |x|3 , if |x| < 1/2,

2(1− |x|)3, if 1/2 ≤ |x| ≤ 1,

0, otherwise.

For this window we have

WT (ω) =
6b3T
π

sin4 ω
4bT

sin4 ω
2

.
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For more discussions, see Brockwell and Davis (1991, p. 359-362), Hannan (1970, p. 275-280)

and Priestley (1981).

(c) The theorem shows that by appropriately choosing bT and w, the spectral density estimator

f̂(λ), under the assumptions in the theorem, is consistent. Its asymptotic mean square error

is of order b2qT + (bTT )−1. This implies that that the optimal bandwidth bT is given by

bT = CT
− 1

1+2q . Then we have that

lim
T→∞

T
2q

1+2qE(f̂(λ)− f(λ))2 = C1

∣∣∣w(r)f (r)(λ)
∣∣∣ 1q=r + C2f

2(λ)

∫ ∞
−∞

w2(x)dx.

For q > 0, 2q
1+2q ∈ (0, 1). This implies that by choosing appropriate window function, conver-

gence rates between 0 and
√
T could be attained, with the highest attainable rate determined

by the largest q such that
∑
|k|q γ(k) <∞ holds.

(d) Absolute summability of fourth order cumulants holds when the series satisfies some α-mixing

conditions. See notes after Theorem 2.33.

(e) It is also possible to obtain central limit theorems for spectral density estimator. See Rosen-

blatt (1984) for example.

3.4 Estimating Long-Run Variances

The spectral density estimator could be used to estimate the long-run variance of a weakly sta-

tionary time series. If a central limit theorem holds for a weakly stationary time series {yt}, the

asymptotic variance must be its long run variance J =
∑∞

k=−∞ γ(k). It is therefore necessary to

develop an estimator for the long run variance. If we observe y1, y2, . . . , yT , a naive estimator for

the long run variance is
∑T−1

k=−(T−1) γ̂(k) where γ̂(k) = 1
T

∑T
t=k+1(yt − µ̂)(yt−k − µ̂)′ is the sample

average estimator of the autocovariance function. However, just like the periodogram, this naive

estimator is not consistent. To see this point, we assume without loss of generality that yt is mean

zero. Then

T−1∑
k=−(T−1)

γ̂(k) =
1

T

T−1∑
k=−(T−1)

T∑
t=k+1

ytyt−k

=
1

T

(
T∑
t=1

yt

)2

+ op(1)

=

(
1√
T

T∑
t=1

yt

)2

+ op(1).

If a central limit theorem holds for {yt}, then the naive estimator converges to a squared normal

distribution instead of the deterministic value
∑∞

k=−∞ γ(k). That is, the naive estimator is not

consistent.

To solve this issue, we utilize the relationship that if {Xt} is weakly stationary with absolutely

summable autocovariance function γ(·) and spectral density f(·), then
∑∞

k=−∞ γ(k) = 2πf(0).
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Therefore we may estimate the long run variance of Xt by 2πf̂(0). As long as f̂ is consistent, the

long run variance estimator is consistent.
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4 Linear Processes

Starting from this chapter, we focus on time series of (real) random variables. In this chapter, we

develop a decomposition of a weakly stationary time series, which motivates the study of linear

processes. Before we proceed to the decomposition, we first introduce some theory of Hilbert spaces.

4.1 Hilbert Spaces

We present in this section the theory of Hilbert spaces over the field of complex numbers. This

presentation can be easily accommodated to the case of Hilbert spaces over the field of real numbers.

For proofs of theorems in this section, see, e.g., Rudin (1987, Chapter 4).

Definition 4.1. A complex vector space H is called an inner product space if to each ordered pair

of vectors x and y ∈ H there is associated a complex number 〈x, y〉, called the inner product of x

and y, such that

1. 〈y, x〉 = 〈x, y〉.
2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for any z ∈ H.

3. 〈αx, y〉 = α〈x, y〉 if α is a scalar.

4. 〈x, x〉 ≥ 0 and equality holds only if x = 0.

Notice that the above definition implies that

1. 〈x, αy〉 = ᾱ〈x, y〉.
2. 〈z, x+ y〉 = 〈z, x〉+ 〈z, y〉.
We may define ‖x‖, the norm of the vector x ∈ H, to be

‖x‖ =
√
〈x, x〉. (4.1)

Theorem 4.2. (The Schwarz Inequality) If H is an inner product space and x, y ∈ H, then

|〈x, y〉| ≤ ‖x‖ ‖y‖ .

Theorem 4.3. If H is an inner product space and x, y ∈ H, then

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

It follows from the triangle inequality that

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖ (x, y, z ∈ H.) (4.2)

Definition 4.4. Let H be an inner product space with norm ‖·‖ defined by (4.1). Inequality (4.2)

suggests that we may define the distance between x and y in H to be ‖x− y‖. It is easy to verify

0 c© 2017-2021 by Bo Hu. All rights reserved.
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that with this distance, H is a metric space. If this metric space is complete, that is, if every

Cauchy sequence converges in H, then H is called a Hilbert space.

Theorem 4.5. Let H be a Hilbert space. For any fixed y ∈ H, the mappings

x→ 〈x, y〉, x→ 〈y, x〉, x→ ‖x‖

are continuous functions on H.

Definition 4.6. Let H be a Hilbert space and M be a subset of H. The orthogonal complement

of M , denoted by M⊥, is the set of all elements x ∈ H such that 〈x, y〉 = 0 for all y ∈M .

If 〈x, y〉 = 0 for some x, y ∈ H, then we say that x is orthogonal to y, and write x ⊥ y.

Theorem 4.7. Let H be a Hilbert space and M ⊂ H. Then M⊥ is a closed subspace of H.

Theorem 4.8. Let H be a Hilbert space and M be a closed subspace of H. For any x ∈ H, we

have the followings.

(a) We may uniquely decompose x as

x = PMx+ PM⊥x

where PMx ∈M and PM⊥ ∈M⊥.

(b) PMx and PM⊥x are the nearest points to x in M and M⊥, respectively. That is, ‖x− PMx‖ =

miny∈PM ‖x− y‖ , ‖x− PM⊥x‖ = miny∈M⊥ ‖x− y‖.
(c) The mappings PM : H →M and PM⊥ : H →M⊥ are linear.

(d) ‖x‖2 = ‖PMx‖2 + ‖PM⊥x‖
2.

The mappings PM are called the orthogonal projections onto the subspace M and onto the

subspace M⊥, respectively. Note that the linearity proposition implies that PM⊥ = I − PM .

4.2 Projections on Spaces Spanned by a Sequence

Theorem 4.9. Let {xn} be a sequence in an inner product space H, and let Mk =
∨k
i=1 xi. Then

Mk is a Hilbert space.

Proof. It is easy to see that Mk is an inner product space (inherits from H). Since it is finite-

dimensional, it has an orthogonal basis {e1, · · · , ej} such that ‖ei‖ = 1 for all i = 1, · · · , j. Let

{yt}, t = 1, 2, · · · be a Cauchy sequence in Mk and let (αt1, · · · , αtj) be the coordinates of yt with

respect to the orthogonal basis above.

For any ym, yn in Mk,

‖ym − yn‖ =

j∑
s=1

(αms − αns)2.

Then {yt} is Cauchy implies that {αts} is Cauchy for each s = 1, · · · , j. Since the complex plain C
is complete, the sequence {αts} converges to a complex number, denoted by αs for s = 1, · · · , j.
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Let

y =

j∑
s=1

αses.

It is obvious that {yt} converges to y. Since y ∈ Mk, Mk is complete. Therefore, Mk is a Hilbert

space. �

Theorem 4.10. Let {xn} be a sequence in a Hilbert space H, let M∞ =
∨k
i=1 xi, the closure of the

space of all finite linear combinations of elements in {xn}. Then M∞ is a Hilbert space.

Proof. Let {zn} be a Cauchy sequence in M∞. Since H is complete, {zn} converges to a point z in

H. Since M∞ is closed, if z 6∈ M∞, there is an ε-ball of z that does not intersect with M∞. This

implies that all but finitely many points of {zn} should lie in this ε-ball, which contradicts with the

assumption that {zn} is a sequence in M∞. �

Theorem 4.11. Let H be a Hilbert space and {xj}, j = 1, 2, · · · be a sequence in H. Let Mk, k =

1, 2, · · · and M∞ be defined as in Theorem 4.9 and 4.10. For any z ∈ H, let ẑ be the orthogonal

projection of z on M∞ and ẑn be the orthogonal projection of z on Mn. Then

lim
n→∞

‖ẑ − ẑn‖ = 0.

That is, {ẑn} converges to ẑ.

Proof. By uniqueness of orthogonal projection, ẑn is also the orthogonal projection of ẑ on Mn.

Since M∞ is the closure of
⋃
Mk and Mk ⊂ Mk+1, then for any ẑ ∈ M∞, there is a sequence

{zn} with zn ∈ Mn such that ‖ẑ − zn‖ → 0 as n → ∞. Since ‖ẑ − zn‖ ≥ ‖ẑ − ẑn‖, it follows that

‖ẑ − ẑn‖ → 0 as n→∞. �

Definition 4.12. A set of vectors eα in a Hilbert space H, where α runs through some index set

A, is called orthonormal if for all α, β ∈ A we have

〈eα, eβ〉 =

1, if α = β,

0, if α 6= β.

Theorem 4.13. If a sequence {ei}∞i=1 in a Hilbert space H is orthonormal, and ẑ is the orthogonal

projection of z ∈ H on
∨∞
i=1 ei, then ẑ has the representation

ẑ =
∞∑
i=1

θiei

where θi = 〈z, ei〉 and
∑∞

i=1 θ
2
i <∞.
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Proof. Let Mn = span ({ei}ni=1) and

zn =

n∑
i=1

〈z, ei〉ei.

We shall prove that zn is the orthogonal projection of ẑ on Mn. First, notice that zn ∈ Mn. For

any ej , j = 1, · · · , n, we have

〈ẑ − zn, ej〉 = 〈ẑ, ej〉 −
n∑
i=1

〈
〈z, ei〉ei, ej

〉
= 〈ẑ, ej〉 −

n∑
i=1

〈z, ei〉〈ei, ej〉

= 〈ẑ, ej〉 − 〈z, ej〉〈ej , ej〉

= 〈ẑ, ej〉 − 〈ẑ, ej〉〈ej , ej〉

= 0.

The third equality follows from that ei ⊥ ej if i 6= j, the fourth equality follows from that ẑ is the

orthogonal projection of z on
∨∞
i=1 ei and the last equality follows from that ‖ej‖ = 1.

Now by Theorem 4.11, zn → ẑ, that is,

lim
n→∞

n∑
i=1

θiei = ẑ.

Then ẑ =
∑∞

i=1 θiei.

Since zn → ẑ, and ‖·‖ is continuous, ‖zn‖ → ‖ẑ‖. Since ‖zn‖ =
∑n

i=1 θ
2
i , we have

∞∑
i=1

θ2
i = lim

n→∞

n∑
i=1

θ2
i = ‖ẑ‖ .

The square summability of {θi} then follows from the fact that ‖ẑ‖ <∞. �

Theorem 4.14. Suppose X and Y are orthogonal sub-Hilbert spaces of H. Then X+Y is a Hilbert

space.

Proof. Let {zi} be a Cauchy sequence in X + Y . Since zi = xi + yi for some xi ∈ X, yi ∈ Y and X

and Y are orthogonal,

‖zm − zn‖2 = ‖xm − xn‖2 + ‖ym − yn‖2 .

This implies that {zi} is Cauchy only if {xi} and {yi} are both Cauchy. Since X and Y are

complete, {xi} converges to some x ∈ X and {yi} converges to some y ∈ Y . Then {zi} = {xi + yi}
converges to x+ y. Since x+ y ∈ X + Y , our conclusion then follows. �
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Theorem 4.15. Let X be a subspace of a Hilbert space H and let X⊥ be the orthogonal complement

of X in H. Then X⊥ is a Hilbert space.

Proof. Let yi be a Cauchy sequence in X⊥. Then for any x ∈ X, 〈yi, x〉 = 0. Since H is a Hilbert

space, {yi} converges to some y ∈ H. Since 〈·, x〉 is continuous for all fixed x ∈ H, 〈y, x〉 = 0.

Therefore yi → y ∈ X⊥ and our conclusion follows. �

Note that we did not require that X to be a Hilbert space in Theorem 4.15.

4.3 The Wold Decomposition Theorem

Let the underlying probability space be (Ω,F ,P). Consider the space L2(Ω,F ,P) of square inte-

grable real random variables on Ω. The space is a Hilbert space in the a.s. sense. The inner product

of two random variables ξ, η in this space is given by Eξη. For more information, see Billingsley

(1995, Section 19). In this section from now on, we talk about random variables in the P-a.s. sense,

or, in the sense of the usual equivalent classes in L2(Ω,F ,P).

Now consider a time series {Xt} such that 0 < EX2
t < ∞. {Xt} could be viewed as sequence

of points in the Hilbert space L2(Ω,F ,P). Let Hn(X) =
∨n
t=−∞Xt, H(X) =

∨∞
t=−∞Xt, and

H−∞(X) =
⋂∞
n=−∞Hn(X). Note that this space is closed. For any ξ ∈ H(X), let ξ̂ be the

orthogonal projection of ξ on H−∞(X). Then we may write ξ = ξ̂ + (ξ − ξ̂). This implies that we

may write

H(X) = H−∞(X)⊕R(X)

where R(X) = {ξ − ξ̂|ξ ∈ H(X)}.

Definition 4.16. A weakly stationary time series X = {Xt} is called deterministic if H(X) =

H−∞(X), and is called purely non-deterministic if H(X) = R(X).

If X is a deterministic series, then the whole series is completely predictable with certainty from

an arbitrary distant past. In this sense we are using the word “deterministic”.

Theorem 4.17. Let X = {Xt} be a weakly stationary time series. Then it has a decomposition

Xt = Xd
t +Xp

t such that Xd = {Xd
t } is deterministic and Xp = {Xp

t } is purely non-deterministic.

Also, EXd
tX

p
s = 0 for any s, t.

Proof. Let Xd
t be the orthogonal projection of Xt on H−∞(X), and let Xp

t = Xt −Xp
t for all t.

Since Xp
t ⊥ H−∞(X) for all t, we have H−∞(Xp) ⊥ H−∞(X). On the other hand, Xp

n ∈ Hn(X),

then Hn(Xp
n) ∈ Hn(X), then H−∞(Xp) ⊂ H−∞(X). We then have H−∞(Xp) = {0}. This implies

that Xp is purely non-deterministic.

Since Hn(X) ⊂ Hn(Xd) ⊕ Hn(Xp), and Hn(Xd) ⊂ Hn(X), Hn(Xp) ⊂ Hn(X), we have that

Hn(X) = Hn(Xd) ⊕ Hn(Xp). We therefore have H−∞(X) ⊂ Hn(Xd) ⊕ Hn(Xp) for all n. Since

Since Xp
t ⊥ H−∞(X) for all t, we have H−∞(X) ⊂ Hn(Xd) for all n. This implies that H−∞(X) ⊂

H−∞(Xd) ⊂ H(Xd). Since Xd
t ∈ H−∞(X) for all t, we have H−∞(Xd) ⊂ H−∞(X). This implies

that H−∞(X) = H−∞(Xd) = H(Xd). This shows that Xd is deterministic.
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Since for each t, Xp
t ⊥ H−∞(X) = H(Xd), we have that EXd

tX
p
s = 0 for all t, s. �

Definition 4.18. Let X = {Xt} be a weakly stationary time series with positive variance. A

random sequence ε = {εt} is an innovation sequence for X if ε is a unit variance white noise

process and Ht(X) = Ht(ε) for all t.

We may understand the innovation εt+1 as the new information to Ht(X) that is need to form

Ht+1(X).

Theorem 4.19. A weakly stationary time series X = {Xt}t∈Z with positive variance is purely

non-deterministic if and only if there is an innovation sequence ε = {εt}t∈Z and a sequence of real

numbers {ak}k∈N with
∑∞

k=0 a
2
k <∞ such that

Xt =

∞∑
k=0

akεt−k a.s..

Proof. Necessity. Write Ht(X) = Ht−1(X)⊕ Bn. Obviously, Bt has dimension either zero or one.

However, if Bt has dimension zero, then by stationarity Bs has dimension zero for all s ∈ Z. This

then implies that Ht(X) = Hs(X) for all t, s, and consequently H(X) = H−∞(X), contradicting

with the assumption that X is purely non-deterministic. Therefore, the dimension of Bt is one,

and we therefore let εt be an element in Bt such that Eε2
t = 1.

For any t, we have

Ht = Ht−k(X)⊕Bt−k+1 ⊕ · · · ⊕Bt.

Note that εt−k+1, . . . , εt is an orthogonal basis in Bt−k+1⊕· · ·⊕Bt and we therefore may represent

Xt =

k−1∑
i=0

aiεt−i + πt−k(Xt)

where πt−k is the orthogonal projection onto Ht−k(X), and ai = EXtXt−i. Note that ai is inde-

pendent of t because X is weakly stationary. Since {εt−i}∞i=0 form an orthonormal sequence, by

Bessel’s inequality we have that
∑∞

i=0 a
2
i < ∞. Therefore

∑∞
i=0 aiεt−i converges in mean square,

and we only need to show πt−k(Xt)→L2 0 as k →∞.

Without loss of generality we may just consider the case t = 0. Write

π−k = π0 +

k∑
i=0

(π−i − π−i+1).

The k + 1 terms in the right hand side of the equation are orthogonal, we then have

k∑
i=0

‖(π−i − π−i+1)(X0)‖2 =

∥∥∥∥∥
(

k∑
i=0

(π−i − π−i+1)

)
(X0)

∥∥∥∥∥
2

= ‖π−k(X0)− π0(X0)‖2 ≤ 4EX2
0 <∞,

then limk→∞ π−k(X0) exists in mean square. Since π−k(X0) ∈ H−k(X) for each k, H−k(X) is
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decreasing in k, we therefore have π−s(X0) ∈ H−k(X) for all s > k. Since H−k(X) is closed,

we have lims→∞ π−s(X0) ∈ H−k(X0). Since this holds for all k, we have limk→∞ π−k(X0) ∈⋂
k≥0H−k(X) = H−∞(X). Since X is purely non-deterministic, H−∞(X) = {0}. Therefore we

have πt−k(Xt)→L2 0.

Sufficiency. Let X = {Xt} satisfy the representation. Then Ht(X) ⊂ Ht(ε) and therefore

H−∞(X) ⊂ Ht(ε) for all t. Since εt+1 ⊥ Ht(ε), εt+1 ⊥ H−∞(X). This then implies that H(ε) ⊥
H−∞(X). By the representation, ε is a orthonormal basis in H(X). It then follows that H−∞(X) =

{0}, which implies that X is purely non-deterministic. It is easy to show that this series is weakly

stationary, and because it is non-deterministic, it must have variance greater than zero. �

It follows from the proof of the theorem that X is a purely non-deterministic weakly stationary

time series if and only if it admits a representation

Xt =
∞∑
k=0

ãkε̃t−k

where ε̃ is a white noise process not necessarily satisfies Ht(X) = Ht(ε̃). Therefore, the above

theorem gives a stronger result in terms of the necessary condition.

Now we obtain a full version of the Wold decomposition.

Theorem 4.20 (Wold Decomposition). Let X = {Xt}t∈Z be a weakly stationary time series with

positive variance. Then we may represent

Xt =
∞∑
k=0

akεt−k +Wt

where W = {Wt}t∈Z is deterministic, ε = {εt}t∈Z is an innovation sequence, and
∑∞

k=0 a
2
k <∞.

4.4 Linear Processes

The Wold decomposition theorem justifies the study of an important class of processes called linear

processes. A process {Xt}t∈Z is linear if it takes the form of

Xt =

∞∑
i=0

φiεt−i (4.3)

where εt ∼ WN(0, σ2). We usually need to impose some restrictions on the coefficients φi. One

frequently used restriction is square summability:

∞∑
i=0

φ2
i <∞.
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Sometimes we also work with the absolute summability condition

∞∑
i=0

|φi| <∞,

which is slightly stronger than the square summability condition.

Before we proceed, we show that such Xt is well defined in some probabilistic sense under the

square summability condition. We shall show the right hand side of (4.3) converges in mean square

to some random variable under the condition. Note that in the Hilbert space of L2(Ω,F ,P) of

square integrable random variables, convergence is given by the Cauchy criteria. That is, we need

to show that

E

(
m∑
i=0

φiεt−i −
n∑
i=0

φiεt−i

)2

→ 0

as m,n → ∞. This is obviously the case given square summability of φi. Therefore,
∑∞

i=0 φiεt−i

converges in mean square to some random variable, which we denoted by Xt.

It is easy to show that for k ≥ 0,

γX(t, t− k) = σ2
∞∑
i=0

φi+kφi,

which is well defined under square summability of φi since∣∣∣∣∣
∞∑
i=0

φi+kφi

∣∣∣∣∣ ≤
( ∞∑
i=k

φ2
i

)1/2( ∞∑
i=0

φ2
i

)1/2

,

and is independent of the time t. Therefore, under the square summability condition, {Xt}t∈Z is

well defined in the mean square sense, and is weakly stationary.

Now
∞∑
k=0

|γ(k)| ≤
∞∑
k=0

∞∑
i=0

|φi+kφi| ≤
∞∑
i=0

|φi|
∞∑
k=0

|φi+k| ≤

( ∞∑
i=0

|φi|

)2

.

Therefore, the autocovariances are absolutely summable under the absolute summability of φi. By

our results in Section 2.3, the absolute summability of φi is sufficient for that

1

T

T∑
t=1

Xt → EXt = 0.

4.5 The Lag Operator

A time series operator transforms one or multiple time series into a new time series. Suppose we

have two time series {xt}t∈Z and {yt}t∈Z. The scalar multiplication operator x 7→ αx for some

55



α ∈ R transforms a time series into a new one:

α{xt}t∈Z = {αxt}t∈Z.

The addition operator + transforms the two time series into a new time series:

{xt}t∈Z + {yt}t∈Z = {xt + yt}t∈Z.

There is a very frequently used operator in time series econometrics which transforms a time

series

· · · , x−1, x0, x1, x2, x3, · · ·

to

· · · , x−2, x−1, x0, x1, x2, · · · .

Such an operator is called a lag operator, and is usually denoted as L. Written formally, we have

that

L{xt}t∈Z = {xt−1}t∈Z.

We usually use Lxt to denote the time-t element of the transformed series L{xt}t∈Z. Then Lxt

should be understood as (Lx)t where x = {xt}t∈Z. With this definition, we have Lxt = xt−1.

Let x = {xt}t∈Z and y = {yt}t∈Z be two time series whose elements are random variables. Let

α ∈ R. Then

L(x+ y) = L{xt + yt} = {xt−1 + yt−1} = {xt−1}+ {yt−1} = Lx+ Ly,

and

L(αx) = L{αxt} = {αxt−1} = α{xt−1} = αLx.

Therefore, we have

L(αx+ y) = αLx+ Ly,

or in element-wise format,

L(αxt + yt) = αxt−1 + yt−1.

This shows that the lag operator is a linear operator.

For any d ≥ 0, we write Ldx = L(Ld−1x). Using this notation, we have, e.g., L2xt = L(Lxt) =

xt−2. We define L−1 to be the inverse of L, that is, if L−1x = y, then Ly = x. It is easy to see that

L−1xt = xt+1, and we define Ldx = L−1(Ld+1x) for d < 0.

It is easy to show that for any α, β, γ, δ ∈ R and p, q ∈ Z,

(α+ βLp)(γ + δLq) = αγ + βγLp + αδLq + βδL(p+q).

This calculation could be generalized and it is easy to see that the basic rules of algebra apply to
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polynomials of the lag operator.

Using the lag operator, we may write a linear process as

Xt =

∞∑
i=0

φiL
iεt,

or

Xt = φ(L)εt

where

φ(L) =
∞∑
i=0

φiL
i.

Note that up to this point, φ(L) as an infinite sum is a “formal expression”. It makes sense only

when it is applied to a time series. The next section shows that φ(L) itself could be viewed as a

power series of the lag operator under certain circumstances.

4.6 Linear Filters

Suppose {Xt}t∈Z is a time series, and {Yt} is generated by

Yt =

∞∑
i=−∞

φiXt−i,

then we say that {Yt} is obtained by applying the linear filter φ(L) =
∑∞

i=−∞ φiL
i to {Xt}.

Theorem 4.21. Let {Xt}t∈Z be a sequence of random variables and φ(L) =
∑∞

i=−∞ φiL
i. If∑∞

i=−∞ |φi| < ∞ and supt EX2
t < ∞, then φ(L)Xt converges in mean square. If in addition {Xt}

is weakly stationary, so is {φ(L)Xt}.

Proof. The mean square convergence follows from the Lebesgue’s dominated convergence theorem

and

E (φ(L)Xt)
2 = lim

T→∞
E

 T∑
i=−T

T∑
j=−T

φiφjXiXj


≤ lim

T→∞

(
T∑

i=−T
|φi|

)2

sup
t

EX2
t

<∞.

It is easy to check that when {Xt} is weakly stationary, the covariance function of Yt = φ(L)Xt is

given by

γY (k) =
∞∑

i=−∞

∞∑
j=−∞

φiφjγX(i− j + k),
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where γX is the autocovariance function of {Xt}. Note that the right hand side of the above equation

converges absolutely since |γX(k)| ≤ γX(0) for all k, and φi is absolutely summable by assumption.

The covariance function is independent of t, which implies that {Yt} is weakly stationary. �

The above results shows that for two linear filters φ(L) =
∑∞

i=−∞ φiL
i and ψ(L) =

∑∞
i=−∞ ψiL

i

with
∑∞

i=−∞ |φi| <∞ and
∑∞

i=−∞ |ψi| <∞, if {Xt} is weakly stationary, then {φ(L)ψ(L)Xt} and

{ψ(L)φ(L)Xt} are well defined and are weakly stationary. Also, it can be shown that

φ(L)ψ(L)Xt = ψ(L)φ(L)Xt = η(L)Xt,

where

η =

∞∑
i=−∞

θiL
i,

ηi =
∞∑

k=−∞
φkψi−k =

∞∑
k=−∞

ψkφi−k.

Linear operators with absolutely summable coefficients inherit algebraic properties of power series.

Now consider φ(L) =
∑∞

i=0 φiL
i such that φ(z) 6= 0 for all |z| ≤ 1 on the complex plane. Then

there exists ε > 0 such that 1/φ(z) has a power series expansion

1

φ(z)
=
∞∑
i=0

ϕiz
i = ϕ(z)

for |z| < 1 + ε. This implies that ϕi(1 + ε/2)i → 0 as i→∞, which in turn implies that there exists

C such that |ϕi| < C(1 + ε/2)−i for all i. As a consequence,
∑∞

i=0 i |ϕi| <∞.

By construction, ϕ(z)φ(z) = 1 for |z| ≤ 1. Since linear operators with absolutely summable

coefficients inherit algebraic properties of power series, we have

ϕ(L)φ(L)Xt = Xt.

Therefore, we may view ϕ(L) as the inverse of φ(L). That is, φ−1(L) = ϕ(L). The inverse exists

if φ(z) 6= 0 for all |z| ≤ 1.

4.7 The Beveridge-Nelson Decomposition

The Beveridge-Nelson decomposition is an important tool in studying linear processes. To develop

the decomposition, write

φ(L) =
∞∑
i=0

φiL
i

=

∞∑
i=0

φi −
∞∑
i=1

(φi − φiLi)
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=

∞∑
i=0

φi −
∞∑
i=1

φi(1− L)(1 + L+ L2 + · · ·+ Li−1)

= φ(1)− (1− L)

∞∑
i=0

 ∞∑
j=i+1

φj

Li.

For the latter part of the last line to give a well defined linear process, we need

∞∑
i=0

 ∞∑
j=i+1

φj

2

<∞.

This is the case if
∑∞

i=0 j
2φ2

j < ∞. See Phillips and Solo (1992) for details. Furthermore,∑∞
i=0

∣∣∣∑∞j=i+1 φj

∣∣∣ <∞ if
∑∞

i=0 j |φj | <∞.

Given
∑∞

i=0 j
2φ2

j <∞, we may write

Xt = φ(1)εt − (X̃t − X̃t−1)

where X̃t =
∑∞

i=0 φ̃iεt−i, φ̃i =
∑∞

j=i+1 φj . Note that {X̃t} is a stationary linear process. The above

decomposition, first introduced by Beveridge and Nelson (1981), is called the Beveridge-Nelson

decomposition or the permanent-transitory decomposition of the linear process {Xt}.

4.8 Asymptotics for Linear Processes

The Beveridge-Nelson decomposition could be used to obtain asymptotics for linear processes. This

approach was developed by Phillips and Solo (1992). The law of large numbers for linear processes

has been given in Section 4.4. Given
∑∞

i=0 j
2φ2

i <∞, we have

1√
T

T∑
t=1

Xt =
1√
T

T∑
t=1

(
φ(1)εt − (X̃t − X̃t−1)

)
= φ(1)

1√
T

T∑
t=1

εt −
1√
T

(X̃T − X̃0).

Note that
1√
T

(X̃T − X̃0) = Op(1/
√
T ),

we have a central limit theorem for {Xt} as long as we have a central limit theorem hold for

{εt}. Readers may wish to consult Section 2.2.2 for a variety of central limit theorems frequently

used in econometrics. For example, under the iid assumption or mds assumption with appropriate

regularity conditions, we have

1√
T

T∑
t=1

Xt →d N(0, φ2(1)σ2) =d N

0,

( ∞∑
i=0

φi

)2

σ2

 .

59



5 Stationary ARMA Processes

5.1 Moving Average Processes

The Wold decomposition theorem implies that any pure non-deterministic weakly stationary process

can be represented as an infinite order moving average process. However, since it is impossible to

fit an arbitrary infinite order moving average process with finite number of data points, we further

approximate infinite order moving average processes by finite order moving average processes.

A q-th order moving average process {Xt}, denoted by MA(q), is given by

Xt = µ+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where εt ∼WN(0, σ2). Taking expectations on both sides, we have EXt = µ. Then the demeaned

process {Xt − µ} is just a special case of the linear process introduced in the previous chapter.

For any choice of the parameters θ1, . . . , θq, they are absolutely summable. So an MA(q) process

inherits directly all the properties of linear processes. As a consequence, {Xt} is weakly stationary,

and its autocovariance function is given by (taking θ0 = 1)

γ(k) =

σ2
∑q−|k|

i=0 θiθi+|k|, |k| ≤ q,

0, |k| > q.

In particular, we have

Var(Xt) = (1 + θ2
1 + θ2

2 + · · ·+ θ2
q)σ

2.

Since the condition
∑q

i=0 i |θi| < ∞ (which implies
∑q

i=0 |θi| < ∞) is always satisfied, we have

that

1

T

T∑
t=1

Xt →p µ,

and

1√
T

T∑
t=1

(Xt − µ)→d N
(
0, (1 + θ1 + · · ·+ θq)

2σ2
)

under appropriate assumptions on {εt}. (For example, if we assume that {εt} is an iid sequence.)

5.2 Autoregressive Processes

Another class of linear process is the autoregressive process, which connects the present value of the

time series variable with its past values in a linear way. A p-th order autoregressive process {Xt},
denoted by AR(p), is given by

Xt = c+ α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + εt (5.1)

0 c© 2017-2021 by Bo Hu. All rights reserved.
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where εt ∼WN(0, σ2).

If a weakly stationary economic time series really behaves as in equation (5.1), i.e., the economic

variable Xt interacts with its past values in the linear way specified in (5.1), then it means that the

equation (5.1), viewed as a stochastic difference equation in Xt, should have a sensible solution. To

see when this is the case, we first consider the simplest AR model given by

Xt = αXt−1 + εt

where {εt} is a white noise process.

Suppose |α| < 1. We first show that the AR(1) model has a weakly stationary solution. Consider

the proposed solution

X∗t =

∞∑
i=0

αiεt−i.

Since |α| < 1, by our discussion in the previous chapter, this proposed solution is well defined in

the mean square sense, and is weakly stationary. It is also easy to check that it actually solves the

difference equation in the sense that

X∗t − αX∗t−1 =
∞∑
i=0

αiεt−i − α
∞∑
i=0

αiεt−1−i = εt.

That is, we have found a weakly stationary solution. To show that this is the only weakly stationary

solution, we iterate backward the difference equation. Any solution {X◦t } to the difference equation

should satisfy

X◦t = εt + αεt−1 + · · ·+ αkεt−k + αk+1X◦t−k−1.

Then by triangular inequality,

‖X◦t −X∗t ‖L2 =

∥∥∥∥∥X◦t −
k∑
i=0

αiεt−i +
k∑
i=0

αiεt−i −X∗t

∥∥∥∥∥
L2

≤

∥∥∥∥∥X◦t −
k∑
i=0

αiεt−i

∥∥∥∥∥
L2

+

∥∥∥∥∥
k∑
i=0

αiεt−i −X∗t

∥∥∥∥∥
L2

= αk+1
∥∥X◦t−k−1

∥∥
L2 +

∥∥∥∥∥
k∑
i=0

αiεt−i −X∗t

∥∥∥∥∥
L2

.

for any k > 0. By definition of X∗t ,
∥∥∥∑k

i=0 α
iεt−i −X∗t

∥∥∥
L2
→ 0 as k → ∞. If {X◦t } is weakly

stationary, then
∥∥X◦t−k−1

∥∥
L2 = EX◦2t−k−1 < ∞. This then implies that the right hand side of the

above equation converges to 0. This in turn implies that ‖X◦t −X∗t ‖L2 = 0, that is, X◦t = X∗t in

mean square sense. This shows that X∗t =
∑∞

i=0 α
iεt−i is the only weakly stationary solution (in

the mean square sense) to the AR(1) difference equation. Note that the above statement does not

rule out the possibility that there are non-weakly stationary solutions to the difference equation.
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For example, it is easy to verify that X̃t = αt+
∑∞

i=0 α
iεt−i is a solution to the difference equation.

However, {X̃t} is not weakly stationary.

Now consider the case that |α| > 1. Apparently,

Xt =

∞∑
i=0

αiεt−i

is not a well defined solution (in mean square sense) in this case, and it cannot be weakly stationary.

However, by similar arguments, we can show that

Xt = −
∞∑
i=1

1

αi
εt+i

is the only weakly stationary solution to the AR(1) difference equation.

It can be shown that if |α| = 1, the AR(1) difference equation does not have any weakly

stationary solution.

If we give t the interpretation as an index for time, then in the case |α| > 1, the weakly

stationary is determined by the future innovations {εs}s>t. This is unnatural in terms of causality.

Therefore, we focus on models in which the solutions are causal, meaning that the solutions can be

expressed as functions of past and current variables but not future variables.

According to the above discussion, if we want an AR(1) model to have a causal weakly stationary

solution (the solution turns out to be unique), we need to restrict α to be smaller than one in

absolute value.

Now we come back to the general AR model (5.1) and ask when the model has a causal weakly

stationary solution. The following theorem, which is a corollary of Theorem 5.2, answers this

question.

Theorem 5.1. Let {Xt} be an AR(p) process given by α(L)Xt = c+ εt where α(L) = 1− α1L−
α2L

2 − · · ·αpLp and εt ∼ WN(0, σ2). If α(z) 6= 0 for all |z| ≤ 1, then {Xt} has a unique causal

weakly stationary solution given by

Xt = α(L)−1(c+ εt) =
c

α(1)
+

∞∑
i=0

ϕiεt−i

where
∑∞

i=0 ϕiz
i is the power series expansion of α−1(z), and

∑∞
i=0 i |ϕi| <∞.

Lütkepohl (2005) calls a process stable if it satisfies the condition that α(z) 6= 0 for all |z| ≤ 1.

It is worth noting that the AR(p) model, even with the stability condition, does allow for other

solutions that are not causal and weakly stationary. However, it only allows for a unique solution

that is causal and weakly stationary.

From the above theorem, we have that for a weakly stationary AR(p) process {Xt}, its expec-
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tation is

µ =
c

α(1)
.

The AR process has a demeaned representation:

Xt − µ = α1(Xt−1 − µ) + α2(Xt−2 − µ) + · · ·+ αp(Xt−p − µ) + εt.

Since the solution is causal, Xt is uncorrelated with εs for any s > t. We therefore can multiple

both sides of the above equation by Xt−k − µ for some k > 1 and take expectations. We then

obtain the Yule-Walker equations of the AR(p) process:

γ(k) = α1γ(k − 1) + α2γ(k − 2) + · · ·+ αpγ(k − p), k = 1, 2, · · · ,

where γ(·) is the autocovariance function of {Xt}. Dividing both sides by γ(0), we get the Yule-

Walker equations for the autocorrelations:

ρ(k) = α1ρ(k − 1) + α2ρ(k − 2) + · · ·+ αpρ(k − p), k = 1, 2, · · · .

The Yule-Walker equations could be used to calculate the autocorrelations of AR(p) processes. For

example, for an AR(2) process given by Xt = c+ α1Xt−1 + α2Xt−2 + εt, we have

EXt =
c

1− α1 − α2
.

Also, ρ(1) = α1ρ(0) + α2ρ(−1). Since ρ(0) = 1, and ρ(−1) = ρ(1), we have ρ(1) = α1
1−α2

. Given

ρ(0) and ρ(1), we may calculate ρ(k) for any k using the Yule-Walker equations.

Note that from the theorem above, the demeaned AR(p) process is a pure non-deterministic

linear process with coefficients satisfying the summability condition for the Beveridge-Nelson de-

composition. Therefore, {Xt} has absolutely summable autocovariances, and as a result,

1

T

T∑
t=1

Xt →p µ,

and under appropriate conditions of εt (for example, εt ∼ iid),

1√
T

T∑
t=1

(Xt − µ)→d N
(

0,
σ2

α2(1)

)
.

Note that, by the arguments in Section 2.3,
∑∞

k=−∞ γ(k) = σ2

α2(1)
.
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5.3 ARMA Processes

The ARMA model contains both an autoregressive part and a moving average part. If {Xt} follows

an ARMA(p, q) model, then

Xt = c+ α1Xt−1 + · · ·+ αpXt−p + εt + θ1εt−1 + · · ·+ θqεt−q,

where εt ∼WN(0, σ2). We could also write it as

α(L)Xt = c+ θ(L)εt (5.2)

where α(z) = 1− α1z − · · · − αpzp and θ(z) = 1 + θ1z + · · ·+ θqz
q.

Theorem 5.2. Let {Xt} be an ARMA(p, q) process given by (5.2), and assume that the two poly-

nomials α(z) and θ(z) have no common zeros. If α(z) 6= 0 for all |z| ≤ 1, then {Xt} has a unique

causal weakly stationary solution given by

Xt = α−1(L)(c+ θ(L)εt) =
c

α(1)
+

∞∑
i=0

ϕiεt−i

where
∑∞

i=0 ϕiz
i is the power series expansion of θ(z)

α(z) , and
∑∞

i=0 i |ϕi| <∞.

Proof. Suppose that α(z) 6= 0 for all |z| ≤ 1. According to Section 4.6, we may apply α−1(L) to

both sides of (5.1) and all the results follows. Note that uniqueness comes from the invertibility of

α(L) with respect to the class of weakly stationary series. �

When α(z) and θ(z) have common zeros, if the zeros are outside the unit disk, and the reduced

ARMA process (by canceling the common factors in α(z) and θ(z)) satisfies the conditions in

Theorem 5.2, then all the arguments in the proof of Theorem 5.2 go through, and the results

still holds, with α(L) and θ(L) replaced with their reduced version. In fact, if none of the common

zeros are on the unit circle, then the ARMA process has a unique causal weakly stationary solution.

However, if there is some common zeros that are on the unit disk, the ARMA process may have

multiple causal weakly stationary solutions, even if the reduced ARMA satisfies the conditions in

Theorem 5.2. For identification, we shall work with models in which α(z) and θ(z) have no common

zeros. See Theorem 5.3 and the remarks following it.

The mean of the ARMA process (5.2) is given by

µ =
c

α(1)
,

and the model could be written in the demeaned version:

Xt − µ = α1(Xt−1 − µ) + · · ·+ αp(Xt−p − µ) + εt + θ1εt−1 + · · ·+ θqεt−q.
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The Yule-Walker equations are given by

γ(k) = α1γ(k − 1) + α2γ(k − 2) + · · ·+ αpγ(k − p), k = q + 1, q + 2, · · · .

We may solve the Yule-Walker equations (which are some homogeneous p-th order linear dif-

ference equations) and obtain the general solution

γ(k) =
n∑
i=1

mi−1∑
j=0

rijk
jz−ki , k ≥ max(p, q + 1)− p,

where zi, i = 1, 2, . . . , n are the distinct zeros of α(z), mi is the multiplicity of zi so that
∑k

i=1mi =

p, and rij are some constants that could be determined by the boundary conditions. See Brockwell

and Davis (1991, Section 3.3 and 3.6) for details. It can be seen that the covariance function of

a causal ARMA process is a sum of some geometrically decaying terms, which implies that causal

ARMA processes (and hence AR and MA processes ) have geometrically decaying autocovariance

functions as the lag k goes to infinity.

Similarly as the AR model, for a causal weakly stationary ARMA(p, q) process satisfying con-

ditions in Theorem 5.2,

1

T

T∑
t=1

Xt →p µ,

and under appropriate assumptions on {εt},

1√
T

T∑
t=1

(Xt − µ)→d N
(

0,
θ2(1)

α2(1)
σ2

)
.

Note that
∑∞

k=−∞ γ(k) = θ2(1)
α2(1)

σ2.

The ARMA process (5.2) is said to be invertible if {εt} can be represented by

εt =

∞∑
i=0

ϑi(Xt−i − µ)

with
∑∞

i=0 |ϑi| <∞. Naturally, if α(z) and θ(z) have no common zeros, and θ(z) 6= 0 for all |z| ≤ 1,

then we may apply θ−1(L) to both sides of (5.2) and obtain

εt = θ−1(L)α(L)(Xt − µ).

Similarly, θ−1(z)α(z) has a power series representation with absolutely summable coefficients. That

is, the ARMA is invertible.
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5.4 The Autocovariance Generating Function

Let {Xt} be a weakly stationary process with covariance function γ(·). Its autocovariance generating

function is defined as

G(z) =
∞∑

k=−∞
γ(k)zk

provided that the power series converges for 1
r < |z| < r with some r > 1. If we know the

autocovariances, we can calculate the autocovariance generating function. On the other hand, if

we know the autocovariance generating function, we can back out the autocovariances by looking

at the coefficients of the power series.

It is obvious that a process is white noise if and only if its autocovariance generating function is

constant. In this case, the constant is equal to the variance of the process. For Xt =
∑∞

i=−∞ φiεt−i

where ε ∼WN(0, σ2) and
∑∞

i=−∞ |φi| <∞, we have that γ(k) = σ2
∑∞

i=−∞ φiφi+|k|. Then

G(z) = σ2
∞∑

k=−∞

∞∑
i=−∞

φiφi+|k|z
k

= σ2

( ∞∑
i=−∞

φ2
i +

∞∑
k=1

∞∑
i=−∞

φiφi+k(z
k + z−k)

)

= σ2

( ∞∑
i=−∞

φiz
i

) ∞∑
j=−∞

φjz
−j


= σ2φ(z)φ(z−1).

For a causal ARMA(p, q) process {Xt} given by α(L)Xt = c + θ(L)εt, it can be written as

Xt = µ +
∑∞

i=0 φiεt−i where
∑∞

i=0 φizt−i = θ(z)
α(z) . Then its autocovariance generating function is

given by

G(z) =
θ(z)θ(z−1)

α(z)α(z−1)
σ2.

5.5 Non-Causal and Non-Invertible Stationary ARMA Processes

In this section we give a brief discussion of non-causal and non-invertible stationary ARMA pro-

cesses. We use a well-know result in complex analysis that for a finite order polynomial φ(z) such

that φ(z) 6= 0 for all |z| = 1, its reciprocal admits a Laurent series expansion given by

φ(z)−1 =

∞∑
i=−∞

ψiz
i = ψ(z)

where the Laurent series converges absolutely on r−1 < |z| < r for some r > 1. In particular,∑∞
i=−∞ |ψi| < ∞. The difference between the case discussed here and the case in which the

polynomial has roots only outside the unit circle is that the expansion of the reciprocal is now a
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two-sided infinite series.

Theorem 5.3. Let {Xt} be an ARMA(p, q) process given by (5.2), and assume that α(z)θ(z) 6= 0

for all |z| = 1. Then {Xt} has a unique weakly stationary solution given by

Xt = α(L)−1(c+ θ(L)εt) =
c

α(1)
+

∞∑
i=−∞

ϕiεt−i

where
∑∞

i=−∞ ϕiz
i is the Laurent series expansion of θ(z)

α(z) , and
∑∞

i=−∞ |ϕi| <∞.

Proof. The solution given in the statement of the theorem is obviously weakly stationary. Also,

by applying α(L) on both sides of solution, we may easily verify that it is indeed a solution to

the ARMA equation. To show uniqueness, suppose that {Yt} is also a stationary solution to

the ARMA equation. Then we have α(L)(Yt − Xt) = 0. By the stationarity of {Yt − Xt} and

therefore the stationarity of {α(L)(Yt −Xt)}, we may apply the operator α(L)−1 on both sides of

α(L)(Yt −Xt) = 0, which gives Yt −Xt = 0. �

We allow for common zeros in the above theorem, as long as the polynomials do not have roots

on the unit circle. The uniqueness of the stationary solution is not affected by common zeors.

This implies that in the case of common zeros, as long as there is no roots on the unit circle,

the ARMA representation that contains common zero gives the same weakly stationary solution

as the ARMA representation obtained by cancelling the common factors. However, if there is at

least one common zeros that lie on the unit circle, then the ARMA equation may have more than

one weakly stationary solution. To give an example, let {Xt} be the weakly stationary solution

to α(L)Xt = θ(L)εt where α(z) and θ(z) have no roots on the unit circle. Let |z0| = 0. For any

mean-zero random variable A uncorrelated with {Xt}, it is easy to verify that {Xt + Azt0} is a

weakly stationary solution to the ARMA equation (1− z0L)α(L)Xt = (1− z0L)θ(L)εt.

We next give a theorem that transforms an arbitrary stationary ARMA process into a causal

and invertible one.

Theorem 5.4. Let {Xt} be an ARMA(p, q) process given by (5.2), and assume that α(z)θ(z) 6= 0

for all |z| = 1. Then there exists polynomials α̃(z) and θ̃(z) of order p and q, respectively, a constant

c̃, and a white noise process {ε∗t } such that α̃(z)θ̃(z) 6= 0 for all |z| ≤ 1 and that

α̃(L)Xt = c̃+ θ̃(L)ε∗t .

Proof. Without loss of generalizty we may assume that Xt is mean zero (i.e., c = 0). The general-

ization to the non-mean-zero case is obvious.

Assume α(L)Xt = θ(L)εt. Let the zeros of α(z) be a1, a2, . . . , ap such that ar+1, ar+2, . . . , ap are

the zeros that lie in the unit circle. Let the zeros of θ(z) be b1, b2, . . . , bq such that bs+1, bs+2, . . . , bq
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are the zeros that lie in the unit circle. Define

α̃(z) = α(z)
∏
r<i≤p

1− aiz
1− a−1

i z
and θ̃(z) = θ(z)

∏
s<i≤p

1− biz
1− b−1

i z
.

Note that all roots of α̃(z) and θ̃(z) lie outside the unit circle. Now define

ε∗t =
α̃(L)

θ̃(L)
Xt =

 ∏
r<i≤p

1− aiL
1− a−1

i L

 ∏
s<i≤p

1− b−1
i L

1− biL

 εt.

The autocovariance generating function of ε∗t is given by

Gε∗t (z) =

 ∏
r<i≤p

1− aiz
1− a−1

i z

 ∏
r<i≤p

1− aiz−1

1− a−1
i z−1

 ∏
s<i≤p

1− b−1
i z

1− biz

 ∏
s<i≤p

1− b−1
i z−1

1− biz−1

σ2

=

 ∏
r<i≤p

a2
i

 ∏
s<i≤p

b2i

σ2,

which is constant. Therefore, {ε∗t } is a white noise. And by construction, α̃(L)Xt = θ̃(L)ε∗t . �

We shall point out here that in general εt and ε∗t have different variances. Also, {ε∗t }, which is

constructed by applying a linear filter on {εt}, could be dependent even if {εt} is an iid sequence.

The above theorem shows that that for any weakly stationary ARMA process without roots on

the unit circle, we can always find a white noise process {ε∗t } such that the ARMA process has a

causal and invertible ARMA(p, q) representation with respect to this new white noise process. Also,

we may conduct similar procedures to a causal and invertible ARMA(p, q) process to obtain its

non-causal and/or non-invertible representations. Therefore, an ARMA process could have multiple

representations, each represents the process equally well (in the sense of characterizing the first two

moments of the series.) However, for practical reasons, most of the time we shall only focus on

ARMA processes that are both causal and invertible. The white noise process that corresponds

to the causal and invertible representation of a series {Xt} is called the fundamental innovation

process of {Xt}.

5.6 Spectral Densities of ARMA Processes

Theorem 5.5. Let {Xt} be a mean-zero, complex-valued weakly stationary process with autoco-

variance function γX and spectral distribution function FX . Let

Yt = φ(L)Xt =
∞∑

j=−∞
φjXt−j

68



where φ(z) =
∑∞

j=−∞ φjz
j and

∑∞
j=−∞ |φj | < ∞, then {Yt} is weakly stationary with autocovari-

ance function

γY (k) =
∞∑

r=−∞

∞∑
s=−∞

φrφ̄sγX(k + s− r),

and the spectral distribution function

FY (λ) =

∫ λ

−π

∣∣φ(e−iν)
∣∣2 dFX(ν).

Proof. Obviously, EYt = 0 for all t. We may follow the proof of Theorem 4.21 to show that

EYtȲt−k =
∞∑

r=−∞

∞∑
s=−∞

φrφ̄sγX(k + s− r),

which is independent of t. This show that {Yt} is weakly stationary.

Also, we have

γY (k) =
∞∑

r=−∞

∞∑
s=−∞

φrφ̄sγX(k + s− r)

=

∞∑
r=−∞

∞∑
s=−∞

φrφ̄s

∫ π

−π
eiλ(k+s−r)dFX(λ)

=

∫ π

−π
eiλk

( ∞∑
r=−∞

φre
−iλr

)( ∞∑
s=−∞

φ̄se
iλs

)
dFX(λ)

=

∫ π

−π
eiλk

∣∣∣φ(e−iλ)
∣∣∣2 dFX(λ).

It is then easy to verify that

FY (λ) =

∫ λ

−π

∣∣φ(e−iν)
∣∣2 dFX(ν).

�

In the setting of the above theorem, if fX is the spectral density of {Xt}, then the spectral

density of {Yt} is

fY (λ) =
∣∣∣φ(e−iλ)

∣∣∣2 fX(λ) = φ(e−iλ)φ(eiλ)fX(λ).

We call the function λ 7→ φ(e−iλ) the transfer function of the filter φ(L), and the function λ 7→∣∣φ(e−iλ)
∣∣2 the power transfer function of the filter.

It is easy to see that a white noise with variance σ2 has a constant spectral density σ2

2π . From

the above theorem we can easily show that that if {Xt} is a causal ARMA process given by
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α(L)Xt = c+ θ(L)εt where εt ∼WN(0, σ2), it has a spectral density

σ2

2π

θ(e−iλ)θ(eiλ)

α(e−iλ)α(eiλ)
=
σ2

2π

∣∣θ(e−iλ)
∣∣2

|α(e−iλ)|2
.

For weakly stationary processes {Xt} with absolutely summable autocovariances, we have that

f(0) = 1
2π

∑∞
k=−∞ γ(k). This implies that the long-run variance of {Xt} is given by 2πf(0).

Let {Xt} be a weakly stationary time series with autocovariance generating function GX(z) and

spectral density fX(λ). Let Yt = φ(L)Xt where φ(L) =
∑∞

i=−∞ φiL
i with

∑∞
i=−∞ |φi| <∞. With

a completely similar argument as in Section 5.4 we may show that

GY (z) = φ(z)φ(z−1)GX(z)

where GY (z) is the autocovariance generating function of {Yt}.
Now we state a approximation result. Using the fact that trigonometric polynomials are uni-

formly dense in the space of continuous even function on [−π, π], we have the following result.

Theorem 5.6. If f is a symmetric continuous spectral density function on [−π, π], then for any

ε > 0 there exists a p-th order polynomial a(z) = 1 + a1z + · · · + apz
p whose coefficients are real

and whose zeros are strictly outside the unit circle such that

sup
λ∈[−π,π]

∣∣∣∣A ∣∣∣a(e−iλ)
∣∣∣2 − f(λ)

∣∣∣∣ < ε

where A =
∫ π
−π f(ν)dν

2π(1+a21+···+a2p)
.

For the proof of the theorem, see Brockwell and Davis (1991, p. 130). With the above theorem

we may conclude immediately the following approximation result.

Theorem 5.7. If f is a symmetric continuous spectral density function on [−π, π], then for any

ε > 0, there exists an invertible MA(q) process

Xt = εt + a1εt−1 + · · ·+ aqεq, εt ∼WN(0, σ2)

with spectral density fX such that

sup
λ∈[−π,π]

|fX(λ)− f(λ)| < ε

where σ2 =
∫ π
−π f(ν)dν

1+a21+···+a2p
.

It is straightforward to show that if {Xt} and {Yt} are two independent weakly stationary time

series with autocovariance generating functions GX(z) and GY (z) and spectral densities fX(λ)

and fY (λ), then the series {Zt} = {Xt + Yt} has autocovariance generating function GZ(z) =

GX(z) +GY (z) and spectral density fZ(λ) = fX(λ) + fY (λ).
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We also have an approximation result using AR processes.

Theorem 5.8. If f is a symmetric continuous spectral density function on [−π, π], then for any

ε > 0, there exists a causal AR(p) process

Xt = a1Xt−1 + · · ·+ apXt−p + εt, εt ∼WN(0, σ2)

with spectral density fX such that

sup
λ∈[−π,π]

|fX(λ)− f(λ)| < ε.

Proof. Let f ε(λ) = max{f(λ), ε2}. Then we have f ε(λ) ≥ ε
2 and |f(λ)− f ε(λ)| ≤ ε

2 . Fix 0 < δ < ε
4 .

Then there exists a polynomial a(z) = 1 + a1z + · · · + apz
p whose coefficients are real and whose

roots are outside the unit disk such that

sup
λ∈[−π,π]

∣∣∣∣A ∣∣∣a(e−iλ)
∣∣∣2 − 1

f ε(λ)

∣∣∣∣ < δ

where A =
∫ π
−π f(ν)dν

2π(1+a21+···+a2p)
. Then we have A

∣∣a(e−iλ)
∣∣2 > ε

4 . Now we have

sup
λ∈[−π,π]

∣∣∣∣∣ 1

A |a(e−iλ)|2
− f ε(λ)

∣∣∣∣∣ = sup
λ∈[−π,π]

∣∣∣A ∣∣a(e−iλ)
∣∣2 − 1

fε(λ)

∣∣∣
A |a(e−iλ)|2 1

fε(λ)

< 8δε2.

Therefore,

sup
λ∈[−π,π]

∣∣∣∣∣ 1

A |a(e−iλ)|2
− f(λ)

∣∣∣∣∣ < 8δε2 +
δ

2
.

We may choose δ small enough so that the right hand side of the above inequality is smaller than

ε. Note that 1

A|a(e−iλ)|2
is the spectral density of the process a(L)Xt = εt, εt ∼ WN(0, 2π

A ). We

therefore have found the desired AR process. �

Now we show that an ARMA process with a unit root cannot be stationary.

Theorem 5.9. If φ(z) and θ(z) are polynomials with no common zeros and if φ(z) = 0 for some

|z| = 1, then the ARMA equation φ(L)Xt = θ(L)εt, εt ∼ WN(0, σ2) has no weakly stationary

solution.

Proof. Let the unit root of φ(z) be z0. We may pick λ = λ0 so that e−iλ0 = z0. Since φ(z) and θ(z)

have no common zeros,
∣∣θ(e−iλ0)

∣∣ 6= 0. We denote this non-zero value by θ0. Since · 7→
∣∣θ(e−i·)∣∣

is continuous, we may choose ε0 > 0 such that
∣∣θ(e−iλ)

∣∣2 > 1
2θ0 for all λ ∈ [λ0, λ0 + ε0]. Since

φ(e−iλ0) = φ(eiλ0) = 0 and both
∣∣φ(e−iλ)

∣∣ and
∣∣φ(eiλ)

∣∣ are continuously differentiable, there exists

C such that
∣∣φ(e−i(λ0+ε))

∣∣ ≤ Cε and
∣∣φ(ei(λ0+ε))

∣∣ ≤ Cε for all ε ∈ [0, ε0].
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Suppose the ARMA equations have a weakly stationary solution {Xt} with spectral distribution

function F . Then we have∫ λ0+ε

λ0

∣∣φ(e−iν)
∣∣2 dF (ν) =

∫ λ0+ε

λ0

∣∣θ(e−iν)
∣∣2 σ2

2π
dν

for any ε ∈ [0, ε0]. This implies that∫ λ0+ε

λ0

C2ε2dF (ν) >
θ0σ

2ε

4π
.

This implies that

F (λ0 + ε)− F (λ0) >
θ0σ

2

4πC2ε
.

Since it holds for all ε ∈ [0, ε0], we may take ε→ 0 and conclude that F (λ0 + ε) =∞, contradicting

with the fact that the spectral distribution function of a weakly stationary process is bounded above

by the variance of the weakly stationary process. Therefore, the ARMA equation cannot have any

weakly stationary solution. �

To estimate the spectral density of an ARMA(p, q) process α(L)Xt = θ(L)εt, we may took the

general non-parametric estimator (3.3), or we could first estimate the ARMA parameters of the

process, and obtain the estimated polynomials α̂(z) and θ̂(z). Then we may estimate the spectral

density as

f̂(λ) =
1

2π
Ĝ(e−iλ) =

σ̂2

2π

θ̂(e−iλ)θ̂(eiλ)

α̂(e−iλ)α̂(eiλ)
.

If the parameter estimators are consistent, one would expect that the spectral density estimator is

consistent under some regularity conditions.

5.7 Forecasting

5.7.1 Principles of Forecasting

Suppose we are interested in forecasting Y given a set of variables X1, X2, . . .. Let Ŷ be a forecast

of Y . To evaluate the performance of the forecast, we need to specify a measurement of forecast

error. A frequently used measure is the mean square error defined as

MSE(Ŷ ) = E(Y − Ŷ )2.

The optimal forecast Ŷ is a function g of X1, X2, . . . that minimizes

E (Y − g(X1, X2, . . .))
2 .
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Note that

E [Y − g(X1, X2, . . .)]
2 = E [Y − E(Y |X1, X2, . . .) + E(Y |X1, X2, . . .)− g(X1, X2, . . .)]

2

= E[Y − E(Y |X1, X2, . . .)]
2 + E[E(Y |X1, X2, . . .)− g(X1, X2, . . .)]

2

+ 2E[(Y − E(Y |X1, X2, . . .))(E(Y |X1, X2, . . .)− g(X1, X2, . . .))].

Since

E
[[
Y − E(Y |X1, X2, . . .)

][
E(Y |X1, X2, . . .)− g(X1, X2, . . .)

]∣∣∣∣X1, X2, . . .

]
= 0,

the unconditional expectation

E[(Y − E(Y |X1, X2, . . .))(E(Y |X1, X2, . . .)− g(X1, X2, . . .))]

is zero, and E [Y − g(X1, X2, . . .)]
2 is maximized at g(X1, X2, . . .) = E(Y |X1, X2, . . .). Therefore,

the best forecast of Y given X1, X2, . . . is the conditional expectation of Y given X1, X2, . . ..

If Y,X1, X2, . . . ∈ L2(Ω,F ,P), then E(Y |X1, X2, . . .) could be viewed as the orthogonal projec-

tion of Y on the subspace of all (measurable) functions of X1, X2, . . ..

In practice, it is not always clear what the conditional expectations should be. Therefore,

we usually restrict our attention to the class of forecasts that could be expressed as a linear

function of X1, X2, . . .. The linear forecast, denoted by L(Y |X1, X2, · · · ), is obtained by the

orthogonal projection of Y on the subspace of all linear functions of X1, X2, . . .. Obviously,

MSE(E(Y |X1, X2, . . .)) ≤ MSE(L(Y |X1, X2, . . .)).

5.7.2 Linear Forecasting Based on an Infinite Number of Observations

Now let Xt = µ+φ(L)εt = µ+
∑∞

i=0 φiεt−i where εt ∼WN(0, σ2) and
∑∞

i=0 |φi| <∞. Suppose we

know the parameters µ and φi’s and would like to forecast Xt+h based on εt, εt−1, . . .. The optimal

linear forecast L(Xt+h|1, εt, εt−1, . . .) = ν +
∑∞

i=0 βiεt−i should satisfy the orthogonal conditions

E

(
Xt+h −

(
ν +

∞∑
i=0

βiεt−i

))
= 0

and

E

(
Xt+h −

(
ν +

∞∑
i=0

βiεt−i

))
εj = 0

for all j ≤ t. This implies that ν = µ and βi = φi+h. That is,

L(Xt+h|1, εt, εt−1, . . .) = µ+ φhεt + φh+1εt−1 + · · · .

We may write it as

L(Xt+h|1, εt, εt−1, . . .) = µ+

[
φ(L)

Lh

]
+

εt
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where for any power series α(z), [α(z)]+ replaces the terms with negative powers in α(z) with zeros.

Now for {Xt} that follows a causal ARMA(p, q) process α(L)Xt = c + θ(L)εt, given all the

parameters and εt, εt−1, . . .,

L(Xt+h|1, εt, εt−1, . . .) =
c

α(1)
+

[
θ(L)

α(L)Lh

]
+

εt.

If the process is also invertible and we know Xt, Xt−1, . . . instead of εt, εt−1, . . .,

X̂t+h|t = L(Xt+h|1, Xt, Xt−1, . . .) =
c

α(1)
+

[
θ(L)

α(L)Lh

]
+

α(L)

θ(L)

(
Xt −

c

α(1)

)
.

This is known as the Wiener-Kolmogorov prediction formula.

The multiple-step-ahead forecasts could be computed in a recursive way. We first show that

when h = 1, that is, when we make one-step-ahead forecast,[
θ(L)

α(L)L

]
+

α(L)

θ(L)
=

1− α(L)

L
+
θ(L)− 1

L

(
1−

[
θ(L)

α(L)L

]
+

α(L)

θ(L)
L

)
.

This can be shown by plugging[
θ(L)

α(L)L

]
+

=
θ(L)− 1

L
α−1(L) +

[
α−1(L)− 1 + 1

L

]
+

=
θ(L)− 1

L
α−1(L) +

α−1(L)− 1

L

into the both sides of the equation we want to establish. This new representation implies that

X̂t+1|t − µ = α1(Xt − µ) + α2(Xt−1 − µ) + · · ·+ αp(Xt−p+1 − µ) + θ1ε̂t + · · ·+ θq ε̂t−q+1,

where

ε̂t =

(
1−

[
θ(L)

α(L)L

]
+

α(L)

θ(L)
L

)
(Xt − µ) = Xt − X̂t|t−1,

which serves as an approximation or estimate of the unobserved εt. Now, by law of iterated

projections,

X̂t+2|t = L
(
L(Xt+2|1, Xt+1, Xt, . . .)

∣∣∣∣1, Xt, Xt−1, . . .

)
,

then

X̂t+2|t − µ = α1(X̂t+1|t − µ) + α2(Xt − µ) + · · ·+ αp(Xt−p+2 − µ) + θ2ε̂t + · · ·+ θq ε̂t−q+2.

Note that L(ε̂t+1|1, Xt, Xt−1, . . .) = 0. In general, for h = 1, 2, . . . , q,

X̂t+h|t − µ = α1(X̂t+h−1|t − µ) + α2(X̂t+h−2|t − µ) + · · ·+ αp(X̂t+h−p|t − µ) + θhε̂t + · · ·+ θq ε̂t+h−q,
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and for h = q + 1, q + 2, . . .,

X̂t+h|t − µ = α1(X̂t+h−1|t − µ) + α2(X̂t+h−2|t − µ) + · · ·+ αp(X̂t+h−p|t − µ).

Note that we have used the fact that Xs|t = Xs for s ≤ t.

5.7.3 Linear Forecasting Based on a Finite Number of Observations

When we have only a finite number of observations Xt, Xt−1, · · · , Xt−m+1 (but continue to assume

that we know the parameters), we may still use the recursive method to make forecasts by setting

ε̂t−m = ε̂t−m−1 = · · · = 0. The performance of this approximation depends on the model, and we

shall not investigate in detail here.

Another way to make forecast based on a finite number of observations is to directly project

Xt+h onto the space spanned by 1, Xt, Xt−1, · · · , Xt−m+1. Suppose that the forecast is given by

Xt+h − µ = βht (Xt − µ) + βht−1(Xt−1 − µ) + · · ·+ βht−m+1(Xt−m+1 − µ) + uht = Xh′
t β

h
t + uht .

The orthogonal condition

EXh
t (Xt+h − µ−Xh′

t β
h
t ) = 0

implies that

βht =
(
EXt+hX

′
t+h

)−1 EXt+h(Xt+h − µ)

=


γ(0) γ(1) · · · γ(m− 1)

γ(1) γ(0) · · · γ(m− 2)
...

...
...

γ(m− 1) γ(m− 2) · · · γ(0)


−1 

γ(h)

γ(h+ 1)
...

γ(h+m− 1)

 .

5.7.4 Optimal Forecasting for Gaussian Processes

Theorem 5.10. Let Y =d N(µ,Σ) and partition Y as Y = (Y ′1 , Y
′

2)′. Suppose µ and Σ are

accordingly partitioned as

µ =

[
µ1

µ2,

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then the conditional distribution of Y1 given Y2 is N(µ1·2,Σ11·2) where µ1·2 = µ1 +Σ12Σ−1
22 (Y2−µ2)

and Σ11·2 = Σ11 − Σ12Σ−1
22 Σ21.

Proof. It is easy to show that Y1 − Σ12Σ−1
22 Y2 is uncorrelated with Y2, and therefore, independent

of Y2. Write

Y1 = (Y1 − Σ12Σ−1
22 Y2) + Σ12Σ−1

22 Y2.

The conditional distribution of the first term on the right hand side above given Y2, due to inde-

pendence, is equal to its unconditional distribution, which is N(µ1−Σ12Σ−1
22 µ2,Σ11−Σ12Σ−1

22 Σ21).
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The second term is constant given Y2. The results then follows immediately. �

The above theorem shows that E(Y1|Y2) = µ1 + Σ12Σ−1
22 (Y2 − µ2), which is a linear function of

Y2. In the forecast setting, when the time series {Xt} is Gaussian, the optimal linear forecast (or-

thogonal projection, including the constant term) coincides with the optimal forecast (conditional

expectation).

5.8 Estimation

In this section, we shall consider the Maximum Likelihood Estimation, to which the OLS estimation

will be connected.

5.8.1 Estimating AR Models

Suppose we have data X1, X2, · · · , XT from an AR(p) model

Xt = c+ α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + εt

where εt ∼ iid N(0, σ2). We shall estimate Θ = (c, α1, · · · , αp, σ2) using MLE. Since Xt can be

expressed as an infinity sum of {εt}, we have that {Xt} is Gaussian, and the density function of

X◦ = (X1, X2, · · · , Xp)
′ given the parameters is

f(Xp, Xp−1, . . . , X1; Θ) = (2π)−p/2 det(Σp)
−1/2 exp

(
−

(X◦ − µ◦)′Σ−1
p (X◦ − µ◦)
2

)

where µ = 1/(1− α1 − · · · − αp), µ◦ = (µ, µ, · · · , µ)′ is the mean of X◦, and

Σp =


γ(0) γ(1) · · · γ(p− 1)

γ(1) γ(0) · · · γ(p− 2)
...

...
...

γ(p− 1) γ(p− 2) · · · γ(0)


is the covariance matrix ofX◦. The autocovariances could be obtained by the Yule-Walker equations

or using the autocovariance generating function.

For t > p, the conditional density function of Xt given Xt−1, · · · , X1 and the parameters is

f(Xt|Xt−1,Xt−2, · · · , X1; Θ) =
1√
2πσ

exp

(
−(Xt − c− α1Xt−1 − · · · − αpXt−p)

2

2σ2

)
.

Now the likelihood of the full sample is

f(XT , XT−1, · · · , X1; Θ) =

 T∏
t=p+1

f(Xt|Xt−1,Xt−2, · · · , X1; Θ)

 f(Xp, Xp−1, . . . , X1; Θ),
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or in the form of log-likelihood (normalized by 1/T ):

`(Θ) =
1

T
ln f(Xp, Xp−1, . . . , X1; Θ) +

1

T

T∑
t=p+1

ln f(Xt|Xt−1,Xt−2, · · · , X1; Θ).

The MLE estimator Θ̂ = (ĉ, α̂1, · · · , α̂p, σ̂2) maximizes the log-likelihood `(Θ). Note that the mean

of the process is estimated as µ̂ = 1/(1− α̂1 − · · · − α̂p).
Unfortunately, due to the existence of the unconditional density f(Xp, Xp−1, . . . , X1; Θ), the

maximization problem does not have an analytical solution, and we have to rely on numerical

optimization methods. For an introduction of popular numerical optimization algorithms, see

Section 6.3 or Hamilton (1994, Section 5.7) for example.

The conditional maximum likelihood estimates (CMLE) are also frequently used. In CMLE,

we look at

f(XT , XT−1, · · · , Xp+1|Xp, Xp−1, · · · , X1; Θ),

that is, we look at the likelihood conditional on the first p observations. This (normalized) log-

likelihood is given by

1

T

T∑
t=p+1

ln f(Xt|Xt−1, Xt−2, · · · , X1; Θ)

=
C

T
− T − p

2T
lnσ2 − 1

2σ2T

∞∑
t=p+1

(Xt − c− α1Xt−1 − · · · − αpXt−p)
2,

where C is a constant. Note that the CMLE estimators ĉ, α̂1, . . . , α̂p are the same as the OLS

estimators. The CMLE estimator of σ2 is given by

σ̂2 =
1

T − p

∞∑
t=p+1

(Xt − ĉ− α̂1Xt−1 − · · · − α̂pXt−p)
2

We make a remark here that the MLE estimator and the CMLE estimator have the same

asymptotic distribution, and are both consistent.1 Since CMLE estimator is the same as the OLS

estimator, and the OLS estimator does not rely on the distributional assumptions on εt, then even

if the distribution of εt is not normal, we may still obtain the quasi-maximum likelihood estimator

under the normality assumption, and the QMLE is consistent.

1The two (normalized) log-likelihood functions differ by 1
T

ln f(Xp, Xp−1, . . . , X1; Θ), which is op(1). This implies
that their maximizers should be very close to each other in probability when T is large, under some uniform con-
vergence condition on the log-likelihood functions. For details and a general theory of extremum estimator, and in
particular, the maximum likelihood estimator, see Newey and McFadden (1994).
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5.8.2 Estimating MA Models

Suppose we have data X1, X2, . . . , XT from an MA(q) model

Xt = µ+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where εt ∼ iid N(0, σ2). We shall estimate Θ = (µ, θ1, · · · , θq, σ2) using MLE.

To obtain the exact likelihood function, we write Y ◦ = µ◦ + Aε◦ where Y ◦ = (Y1, Y2, . . . , YT )′,

µ◦ = (µ, µ, . . . , µ)′, ε◦ = (ε1−q, ε2−q, . . . , εT )′, and A is an appropriate matrix whose entries contain

the θ’s. Since ε◦ is normal with mean zero and variance σ2I, where I is the (T + q) by (T + q)

dimensional identity matrix, then Y ◦ =d N(µ◦, σ2AA′), and the log likelihood function is given by

(2π)−T/2 det(σ2AA′)−1/2 exp

(
− 1

2σ2
(Y ◦ − µ)′(AA′)−1(Y ◦ − µ)

)
.

The conditional likelihood is obtained as the density of XT , XT−1, · · · , X1 conditional on the

initial innovations ε0, ε−1, . . . , ε1−q. Given the initial innovations, we may obtain {εt}Tt=1 recursively

through

εt = Xt − µ− θ1εt−1 − θ2εt−2 − · · · − θqεt−q.

The conditional log likelihood is given by

`(Θ) =
1

T
ln f(XT , Xt−1, . . . , X1|ε0, ε−1, . . . , ε1−q; Θ)

=
1

T

T∑
t=1

ln f(Xt|Xt−1, Xt−2, . . . , X1, ε0, . . . , ε1−q; Θ)

=
C

T
− 1

2
lnσ2 − 1

T

T∑
t=1

ε2
t

2σ2
,

where C is a constant. Since the initial innovations are not observed, we may set ε0 = ε−1 = . . . =

ε1−q = 0 as an approximation. This approximation is sensible only if the MA process is invertible.

Otherwise, the effect of ε0, ε−1, . . . , ε1−q will accumulate over time.

5.8.3 Estimating ARMA Processes

Suppose we have data X1, X2, . . . , XT from an ARMA(p, q) model

Xt = c+ α1Xt−1 + · · ·+ αpXt−p + εt + θ1εt−1 + · · ·+ θqεt−q,

where εt ∼ iid N(0, σ2). We shall estimate Θ = (c, α1, α1, · · · , αp, θ1, · · · , θq, σ2) using MLE.

We may obtain the conditional likelihood of the XT , XT−1, . . . , Xp+1 given Xp, Xp−1, . . . , X1

and εp, εp−1, . . . , εp−q+1. With these initial values, we may recursively obtain {εt}Tt=p+1 by

εt = Xt − c− α1Xt−1 − · · · − αpXt−p − θ1εt−1 − · · · − θqεt−q.
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The conditional log likelihood is then

`(Θ) =
C

T
− T − p

2T
lnσ2 − 1

T

T∑
t=p+1

ε2
t

2σ2
,

where C is a constant. Once again, we may set εp = εp−1 = · · · = εp−q+1 = 0 if the ARMA process

is invertible.

To obtain the exact likelihood for an ARMA process, we will use the Kalman filter, which will

be introduced in a later chapter.

5.8.4 Asymptotic Properties of the Estimators

Under some regularity conditions, the MLE or CMLE estimators turn out to be consistent and

asymptotically normal. If fact,

√
T (Θ̂n −Θ0)→d N

(
0,−H−1

)
where H is the probability limit of ∂2`(Θ)

∂Θ∂Θ′ evaluated at the true value Θ0 of Θ, which happens to

be non-random, i.e.,
∂2`(Θ0)

∂Θ∂Θ′
→p H.

We may estimate H by ∂2`(Θ̂n)
∂Θ∂Θ′ , the Hessian of the log likelihood function evaluated at the estimated

Θ.

The theory of maximum likelihood estimation justifies another estimator for the asymptotic

variance: I = −H where I is the probability limit of T ∂`(Θ)
∂Θ

∂`(Θ)
∂Θ′ evaluated at the true value Θ0 of

Θ, which also happens to be non-random, i.e.,

T
∂`(Θ0)

∂Θ

∂`(Θ0)

∂Θ′
→p I.

We may estimate I by T ∂`(Θ̂n)
∂Θ

∂`(Θ̂n)
∂Θ′ .

For a careful treatment of the theory of maximum likelihood estimation, see Chapter 6.

5.9 Model Selection

To determine the order of an MA process {Xt}, we may check the autocorrelation function (ACF)

of {Xt}. If {Xt} follows an MA(q0), then we have ρ(k) = 0 for all k > q0. We may estimate

the sample autocorrelation function by ρ̂(k) = γ̂(k)
γ̂(0) , and for a MA(q0) process, under appropriate

conditions (see Theorem 2.33 and the comments below it), we can show that

√
T ρ̂(k)→d N

0,

q∑
i=−q

ρ2(i)


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for k > q0.

To determine the order of an causal AR process {Xt}, we may check the partial autocorrelation

function of {Xt}. The partial autocorrelation function PACF(k) at lag k for a weakly stationary

time series {Xt} is defined to be the coefficient in front of Xt−k in L(Xt|1, Xt−1, Xt−2, . . . , Xt−k).

It is easy to see that if the true model is AR(p0), then PACF(k) = 0 for all k > p0. The lag-k

partial autocorrelation could be obtained as the OLS estimate of αkk in the regression model

Xt = αk0 + αk1Xt−1 + · · ·+ αkkXt−k + εkt,

and for an AR(p0) model, using the two-step regression method introduced in Section 1.3.2, we can

show that √
T α̂kk →d N(0, 1)

for k > p0.

To determine the order (p, q) of a causal and invertible ARMA(p, q) model, we may apply the

Akaike Information Criteria (AIC) or the Bayesian Information Criteria (BIC). For any p and q,

we estimate the model using MLE, getting the fitted residuals ε̂t, and calculate

σ̂2
p,q =

1

T

T∑
t=1

ε̂2
t .

The AIC and BIC are defined respectively as

AIC(p, q) = ln σ̂2
p,q +

2(p+ q)

T

and

BIC(p, q) = ln σ̂2
p,q +

(p+ q) lnT

T
.

The estimated orders p̂, q̂ are the pair of (p, q) that minimizes AIC or BIC.

Suppose that the true model is an ARMA(p0, q0) model. Under the assumption that εt is iid

normal, we may show that p̂ →p p0 and q̂ →p q0 if we use the BIC. Actually we may replace the

penalty term in BIC with (p+q)C(T )
T for any C(T ) that diverges to infinity as T → ∞ and still get

the consistency result hold. Unfortunately the order estimators using AIC are not consistent. The

model selected by AIC tends to overfit. That is, the AIC tends suggest orders that are greater than

the true orders. See Hannan (1980) for details. Of course, the information criteria also work for

the AR and the MA models.
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6 Extremum Estimation

Let (Ω,F ,P) be the underlying probability space and x1, x2, · · · , xn be random variables or random

vectors taking values in X . Let Θ be the parameter space. Let Qn(X, θ) be a function from X n×Θ

to R. Then θ̂n is called an extremum estimator if

θ̂n = arg min
θ∈Θ

Qn(X, θ).

In particular, if Qn(X, θ) = 1
n

∑n
i=1 q(xi, θ) for some q(x, θ) from X × Θ to R, then θ̂n is called

an M -estimator. Obviously, M-estimators are extremum estimators. In this chapter we present a

general asymptotic theory for extremum estimation and M-estimation.

6.1 Asymptotic Consistency

The following is a general result for consistency. This theorem holds for general minimization

estimators, including the M-estimators.

Theorem 6.1. Let Θ be a metric space and {Qn} be a sequence of real random functions defined

on Θ. Let θ̂n = arg minθ∈ΘQn(θ). If there exists a function Q : Θ→ R and θ0 ∈ Θ such that

(a) for each open ball N of θ0, Q(θ0) < infθ∈Θ\N Q(θ), and

(b) Qn(θ) converges uniformly in probability to Q(θ) as n→∞, i.e.,

sup
θ∈Θ
|Qn(θ)−Q(θ)| →p 0,

then θ̂n →p θ0 as n→∞.

It should be noted here that Qn is a function from Ω × Θ to R. When we write Qn(θ), we

understand it as Qn(·, θ) and treat it as a random function. The condition (a) in the theorem is a

separation assumption. It requires not only that θ0 is the unique minimizer of Q, but the minimum

is well separated. The convergence in condition (b) should be understood as in outer probability

P∗. Note that even if Qn(θ) is measurable for each θ ∈ Θ and for each n, supθ∈Θ |Qn(θ)−Q(θ)|
may still be not measurable. For more details on outer probability (outer measure), one may refer

to Billingsley (1995, Section 11).

Proof of Theorem 6.1. Let ρ be the metric in Θ. By the separation assumption (a), for any ε > 0,

there exists δ > 0 such that Q(θ)−Q(θ0) > δ for all θ ∈ Θ\N , where N is the ε-ball in Θ entered

at θ0. Thus,

P
(
ρ(θ̂n, θ0) ≥ ε

)
≤ P∗

( ∣∣∣Q(θ̂n)−Q(θ0)
∣∣∣ > δ

)
.

0 c© 2017-2021 by Bo Hu. All rights reserved.
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Then consistency of θ̂n follows immediately from that∣∣∣Q(θ̂n)−Q(θ0)
∣∣∣ = Q(θ̂n)−Qn(θ̂n) +Qn(θ̂n)−Q(θ0)

≤ sup
θ∈Θ
|Q(θ)−Qn(θ)|+Qn(θ0)−Q(θ0)

≤ 2 sup
θ∈Θ
|Q(θ)−Qn(θ)| →p 0.

�

It can be easily seen from the proof that θ̂n do not have to be the exact minimizer of the

objective function Qn(θ). This condition can be replaced by that Qn(θ̂n) ≤ infθ∈ΘQn(θ) + op(1)

without affecting the result. If we replace the uniform convergence in probability of Qn to uniform

almost sure convergence, then we get strong consistency of θ̂n, i.e., θ̂n →a.s. θ0.

Condition (a) holds if Θ is a compact metric space, Q : Θ → R is lower semicontinuous,1 and

θ0 is the unique minimizer of Q. In fact, fix ε > 0 and let N be the ε-ball centered at θ0. Then

Θ\N , being a closed subset of a compact set, is compact. A lower semicontinuous real function

on a compact set attains its minimum. The results then follows easily. This result leads to the

following corollary of Theorem 6.1 immediately, which appears in Newey and McFadden (1994).

Corollary 6.2. Let Θ be a compact metric space and {Qn} be a sequence of real random functions

defined on Θ. Let θ̂n = arg minθ∈ΘQn(θ). If there exists a continuous function Q : Θ → R such

that Q(θ) is uniquely minimized at θ = θ0, and that Qn(θ) converges uniformly in probability to

Q(θ) as n→∞, then θ̂n →p θ0 as n→∞.

The assumption of compactness of Θ may be replaced by a local convexity assumption. For

details, see Newey and McFadden (1994, Section 2.6).

The uniform convergence in probability assumption in the above theorem is an abstract one. In

the context of M-estimators, the uniform law of large numbers (ULLN) provides simple conditions

that guarantee uniform convergence in probability.

Definition 6.3. Let {Qn} be a sequence of real random functions on Θ, where Θ is a metric space

with metric ρ. The sequence {Qn} is said to be stochastically equicontinuous if for any ε > 0 and

η > 0 there exists δ > 0 such that

lim sup
n→∞

P∗
(

sup
θ∈Θ

sup
{θ′∈Θ:ρ(θ,θ′)<δ}

∣∣Qn(θ)−Qn(θ′)
∣∣ > ε

)
< η.

Definition 6.4. A metric space (Θ, ρ) is said to be totally bounded if for any ε > 0 there exists a

finite collection of open balls in Θ of radius ε whose union is Θ.

Obviously, any compact metric space is totally bounded.

1A function f : X → R is called lower semicontinuous if f−1((a,∞)) is open for each a ∈ R. A continuous function
is lower semicontinuous.
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Theorem 6.5. Let (Θ, ρ) be a metric space and {Qn} be a sequence of real random functions

defined on Θ.

(a) If

sup
θ∈Θ
|Qn(θ)| →p 0,

then {Qn} is stochastically equicontinuous.

(b) If {Qn} is stochastically equicontinuous, Qn(θ)→p 0 for all θ ∈ Θ, and Θ is totally bounded,

then

sup
θ∈Θ
|Qn(θ)| →p 0.

Proof. The proof for part (a) is trivial. For part (b), fix ε > 0 and η > 0. By stochastic equiconti-

nuity of {Qn}, there exists δ > 0 such that

lim sup
n→∞

P∗
(

sup
θ∈Θ

sup
{θ′∈Θ:ρ(θ,θ′)<δ}

∣∣Qn(θ)−Qn(θ′)
∣∣ > ε

2

)
< η.

Since Θ is totally bounded, there exists δ-balls centered at t1, t2, · · · tr that covers Θ. Define the

function h : Θ→ {t1, · · · , tr} such that ρ(h(θ), θ) < δ. Then for all n, we have that

sup
θ∈Θ
|Qn(θ)| ≤ sup

θ∈Θ
|Qn(θ)−Qn(h(θ))|+ sup

θ∈Θ
|Qn(h(θ))|

≤ sup
θ∈Θ

sup
{θ′∈Θ:ρ(θ,θ′)<δ}

∣∣Qn(θ)−Qn(θ′)
∣∣+ max

1≤i≤r
|Qn(ti))| .

Then

lim sup
n→∞

P∗
(

sup
θ∈Θ
|Qn(θ)| > ε

)
≤ lim sup

n→∞
P∗
(

sup
θ∈Θ

sup
{θ′∈Θ:ρ(θ,θ′)<δ}

∣∣Qn(θ)−Qn(θ′)
∣∣ > ε

2

)
+ lim sup

n→∞
P∗
(

max
1≤i≤r

|Qn(ti))| >
ε

2

)
< η.

Note that in the last inequality we have used the fact that Qn(θ) →p 0 for all θ implies that

P(max1≤i≤r |Qn(ti))| > ε
2)→ 0. Since η is arbitrary, our conclusion follows immediately. �

Theorem 6.6. Suppose that {xi} is a sequence of random variables or vectors taking values in X ,

and qi : X × Θ → R is a function. Suppose qi(xi, θ) is measurable for each i and each θ ∈ Θ so

that we may define

Qn(θ) =
1

n

n∑
i=1

qi(xi, θ) and Q̄n(θ) =
1

n

n∑
i=1

Eqi(xi, θ).

If

(a) Θ is a compact metric space,
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(b) for each θ ∈ Θ, Qn(θ)− Q̄n(θ)→p 0, and

(c) there exists measurable functions bt : X → R+ and h : R+ → R+ with h(0) = 0 and h

continuous at 0 such that 1
n

∑n
i=1 Eb(xi) = O(1), and |qi(xi, θ)− qi(xi, θ′)| ≤ bi(xi)h(ρ(θ, θ′))

for θ, θ′ ∈ Θ, where ρ is the metric on Θ.

Then Q̄n(θ) is stochastically equicontinuous, and

sup
θ∈Θ

∣∣Qn(θ)− Q̄n(θ)
∣∣→p 0.

Proof. Let Bn = 1
n

∑n
i=1 b(xi). By assumption, we have Bn = Op(1). Note

∣∣Qn(θ)−Qn(θ′)
∣∣ ≤ Bnh(ρ(θ, θ′)).

This implies that Qn(θ) is stochastically equicontinuous. Also,

∣∣Q̄n(θ)− Q̄n(θ′)
∣∣ ≤ E

∣∣Qn(θ)−Qn(θ′)
∣∣

≤ O(1)h(ρ(θ, θ′)),

This implies that Q̄n(θ) is equicontinuous. Then Qn(θ) − Q̄n(θ) is stochastically equicontinuous.

The results follows immediately from Part (b) of Theorem 6.5. �

Note that this theorem gives conditions under which pointwise convergence in probability (part

(b) in the assumption) implies uniform convergence in probability. For further details, see Newey

(1991). Also, if we consider Borel σ-algebras, then continuous functions are measurable. Here we

make this assumption implicit.

Corollary 6.7. Suppose {xi} is a sequence of iid or strictly stationary and ergodic sequence of

random variables or vectors taking values in X . Suppose q : X × Θ is continuous at each θ ∈ Θ

with probability one, Θ is a compact metric space, and |q(xi, θ)| ≤ d(xi) for some d : X → R such

that Ed(xi) <∞. Then

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

q(xi, θ)− Eq(xi, θ)

∣∣∣∣∣→p 0,

and E(xi, θ) is continuous.

Note that strictly stationarity and ergodicity of the data process and almost sure continuous of

the q function guarantee the pointwise convergence in probability of 1
n

∑n
i=1 q(xi, θ).

Theorem 6.8. Let {xi} be a sequence of random variables or vectors taking values in X , q :

X ×Θ→ R, Qn(θ) = 1
n

∑n
i=1 q(xi, θ), θ̂n = arg minθ∈ΘQn(θ). If

(a) Θ is a compact metric space,

(b) {xi} is iid or strictly stationary and ergodic,

(c) Eq(xi, θ) > Eq(xi, θ0) for all θ 6= θ0, and
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(d) q : X × Θ is continuous at each θ ∈ Θ with probability one, and |q(xi, θ)| ≤ d(xi) for some

d : X → R such that Ed(xi) <∞.

Then θ̂n →p θ0.

Proof. Note that if {xt} is strictly stationary and ergodic, then the process {yt} defined by yt =

φ(xt, xt−1, · · · ) is strictly stationary and ergodic for any measurable function φ : R∞ → Rk. A law

of large number then holds. Then the results follows immediately from the previous results. �

6.2 Asymptotic Normality

Theorem 6.9. Let θ̂n = arg minθ∈ΘQn(θ) where Qn is a function of the data points x1, . . . , xn

and the parameters θ, and θ̂n →p θ0 for some θ0 in the interior of the convex set Θ ⊂ Rm. Suppose

that Qn(θ) is twice continuously differentiable in (the interior of) Θ,
√
n∂Qn(θ0)

∂θ →d N(0,Σ), and

that Hn(θ̃n) →p H as long as θ̃n →p θ0, where Hn(·) = ∂2Qn(·)
∂θ∂θ′ is the Hessian of Qn, and H is a

nonstochastic positive definite matrix. Then

√
n(θ̂n − θ0)→d N(0, H−1ΣH−1).

Proof. By definition of the maximizer and the differentiability of Qn(θ), we have that

√
n
∂Qn(θ̂n)

∂θi
= 0

for each i = 1, 2, . . . ,m, where θi is the i-th component of θ. The mean value theorem gives that

√
n
∂Qn(θ̂n)

∂θi
=
√
n
∂Qn(θ0)

∂θi
+
∂2Qn(θ̃in)

∂θi∂θ′
√
n(θ̂n − θ0),

where θ̃in is some point in Θ such that
∥∥∥θ̃in − θ0

∥∥∥ ≤ ∥∥∥θ̂n − θ0

∥∥∥. If we stack the equation for

i = 1, . . . ,m together, we have

√
n
∂Qn(θ̂n)

∂θ
=
√
n
∂Qn(θ0)

∂θ
+Hn(θ̃1, . . . , θ̃m)

√
n(θ̂n − θ0)

whereHn(θ̃1, . . . , θ̃m) is a matrix whose i-th row is ∂2Qn(θ̃in)
∂θi∂θ′

. By assumption, we haveHn(θ̃1, . . . , θ̃m)

converges in probability to H.

Now we have

√
n(θ̂n − θ0) = −Hn(θ̃1, . . . , θ̃d)

−1√n∂Qn(θ0)

∂θ
→d N(0, H−1ΣH−1).

�

A sufficient condition for “Hn(θ̃n) →p H as long as θ̃n →p θ0” is supθ∈Θ |Hn(θ)−H(θ)| →p 0
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for some H(·) continuous at θ0. To see this, note∣∣∣Hn(θ̂n)−H(θ0)
∣∣∣ ≤ ∣∣∣Hn(θ̂n)−H(θ̂n)

∣∣∣+
∣∣∣Hn(θ̂n)−H(θ0)

∣∣∣ .
We also note here that if the minimum appears on the boundary of Θ, the asymptotic normality

can fail. See Newey and McFadden (1994, p. 2144) for examples.

6.3 Numerical Optimization Methods

In this section we introduce some numerical optimization methods in computing extremum estima-

tors. Our goal is to find

θ̂n = arg min
θ∈Θ

Qn(θ)

where θ is a p-dimensional parameter in Rp, given data (x1, . . . , xn).

One way to obtain the minimizer is to find the analytical solution to the optimization problem,

if such a solution exists. If such a task is difficult, then one probably has to rely on some numerical

methods. One may conduct a brute-force grid search for minimum. However, this only works in

the case where p is small. When p is large, the curse-of-dimensionality kicks in, and in general, it

is not possible to conduct the search within computing powers that are accessible to most of us.

In the following we introduce some useful methods. For simplicity, we treat data as fixed values

instead of random elements in the following, until we start to examine the probabilistic properties

of these methods.

6.3.1 Newton-Raphson Method

Suppose we want to use the first order condition

fn(θ̂n) =
∂Qn(θ̂n)

∂θ
= 0

to solve for θ̂n. Suppose we have θn,k that is close to θ̂n. If fn admits a Taylor expansion around

θn,k, we have

0 = fn(θ̂n) = fn(θn,k) + Fn(θn,k)(θ̂n − θn,k) + o
(∥∥∥θ̂n − θn,k∥∥∥) ,

where

Fn(θ) =
∂Qn(θ)

∂θ
=
∂2Qn(θ)

∂θ∂θ′
.

This implies that

θ̂n ≈ θn,k − F−1
n (θn,k)fn(θn,k),

which suggests an iterative algorithm to calculate θ̂n by

θn,k+1 = θn,k − F−1
n (θn,k)fn(θn,k), k = 1, 2, . . . .
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We iterate until it converges. However, in general, Newton-Raphson method may or may not

converge. In cases where it does not converge, we may try some modified Newton-Raphson method

instead. The algorithm of default Newton-Raphson is given by

θdn,k+1 = (1− Jk)θ∗n,k+1 + Jkθ
+
n,k+1

where

θ∗n,k+1 = θdn,k − F−1
n (θdn,k)fn(θdn,k),

θ+
n,k+1 = θdn,k − F−1

n,kfn(θdn,k),

Jk = 1{Qn(θ∗n,k+1) ≥ Qn(θdn,k)},

and Fn,k is chosen so that Qn(θ+
n,k+1) < Qn(θdn,k).

The algorithm of line search Newton-Raphson is given by

θMn,k+1 = θαkn,k+1,

where

αk = arg min
α∈A

Qn(θn,k+1)α

for some A ⊂ [0, 1] and

θαn,k+1 = θMn,k − αF−1
n (θMn,k)fn(θMn,k).

6.3.2 Gauss-Newton Method

Suppose Qn(θ) takes the form of

Qn(θ) =
1

2
rn(θ)′rn(θ)

where rn(θ) = (rn1(θ), . . . , rnp(θ))
′. The first order derivative is

fn(θ) =
∂r′n(θ)

∂θ
rn(θ),

and the second order derivative is

Fn(θ) =
∂r′n(θ)

∂θ

∂rn(θ)

∂θ′
+

k∑
i=1

∂2rni(θ)

∂θ∂θ′
rni(θ).

At around θ̂n we may ignore the second term in Fn(θ) and obtain the algorithm

θGn,k+1 = θGn,k −G−1
n (θGn,k)fn(θGn,k)

where

Gn(θ) =
∂r′n(θ)

∂θ

∂rn(θ)

∂θ′
.
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Theorem 6.10. Suppose that conditions of Theorem 6.9 holds. Let θ̄n be an initial estimator for

θ and H̄n be an estimator of plimn→∞
∂2Q̂n(θ0)
∂θ∂θ′ such that H̄n →p H. Let θ̃n = θ̄n − H̄−1

n
∂Q̂n(θ̄n)

∂θ . If
√
n(θ̄n − θ0) is bounded in probability, then

√
n(θ̃n − θ0)→d N(0, H−1ΣH−1).

Proof. We have that

√
n(θ̃n − θ0) =

√
n(θ̄n − θ0)−

√
nH̄−1

n

∂Q̂n(θ̄n)

∂θ

=
√
n(θ̄n − θ0)−

√
nH̄−1

n

∂Q̂n(θ0)

∂θ
−
√
nH̄−1

n

∂2Q̂n(θ∗n)

∂θ∂θ′
(θ̄n − θ0)

=

(
I − H̄−1

n

∂2Q̂n(θ∗n)

∂θ∂θ′

)
√
n(θ̄n − θ0)−

√
nH̄−1

n

∂Q̂n(θ0)

∂θ

where θ∗n is the mean value. Since H̄−1
n →p H

−1 and ∂2Q̂n(θ∗n)
∂θ∂θ′ →p H, and

√
n(θ̄n − θ0) is bounded

in probability, we have that the first term in the last expression converge in probability to zero.

The second term converge in distribution to N(0, H−1ΣH−1). This completes the proof of the

theorem. �

Note that θ̃n is the one step iteration of θ̂n in the Newton-Raphson method or its variant. The

theorem then shows that if we can start from a reasonably good estimator θ̄n (there is no restriction

on the variance of the estimator), after one iteration, we would end up with an estimator that has

the same asymptotic variance as the extreme estimator.

6.4 Asymptotics for Maximum Likelihood Estimation

We first consider the consistency and asymptotic normality of the conditional maximum likelihood

estimators. Note that the conditional likelihood functions (normalized by 1/T ) in Chapter 5 are of

the form

1

T

T∑
t=1

q(Yt; θ)

where θ is the vector of parameters and Yt is a vector of data that appear in the conditional density

in period t. To be consistent with notations used in the previous sections in this Chapter, I used

θ instead of Θ to denote the parameter vector. Note that the normalizing constant 1/T may be

replaced by 1/(T − p) in the AR cases. The q function in general takes the form of

q(Yt, θ) = r(θ) +
(Xt − c− α1Xt−1 − · · · − αpXt−p − θ1εt−1 − · · · − θqεt−q)2

2σ2

where Yt = (Xt, . . . , Xt−p, εt−1, . . . , εt−q)
′, and r(θ) is some function of the parameter θ given by

θ = (c, α1, . . . , αp, θ1, . . . , θq, σ
2)′. If we impose conditions such that terms like

1

T

T∑
t=1

XiXj and
1

T

T∑
t=1

Xiεj
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converge in probability respectively to EXiXj and EXiεj , then

1

T

T∑
t=1

q(Yt; θ)→p Eq(Yt, θ),

and we may use the results in the above two sections to establish the consistency and asymptotic

normality of the MLE estimators, if we can show that Eq(Yt, θ) > Eq(Yt, θ0) for all θ 6= θ0, where

θ0 is the true value of θ.

For the above condition to hold, we only need that θ0 is identified. If we use f(·, θ) to denote

the conditional density function (such that q(Yt, θ) = − ln f(Yt, θ)), identification of θ0 means that

if θ 6= θ0 and θ ∈ Θ, then f(Yt, θ) 6= f(Yt, θ0). In the MLE setting, identification implies uniqueness

of maximizer (minimizer) due to the information inequality:

Eq(Yt, θ)− Eq(Yt, θ0) = −E
(

ln
f(Yt, θ)

f(Yt, θ0)

)
> − ln

(
E
f(Yt, θ)

f(Yt, θ0)

)
= − ln

∫
f(y, θ)

f(y, θ0)
f(y, θ0)dy

= 0.

Note that the information inequality is a consequence of the Jensen’s inequality, and the strictness

comes from the identification assumption.

For MLE estimators, we may simplify its “sandwich” asymptotic variance using the relationship

between the Fisher information and the Hessian. For notation convenience, we denote the observed

data by Y , and denote Eθ as the expectation with respect to the density f(y; θ). Furthermore,

we introduce the following definitions related to the (normalized) log-likelihood function `(θ) =

ln f(y; θ).

(a) (Score function) s(θ) = ∂`(θ)
∂θ .

(b) (Hessian) h(θ) = ∂2`(θ)
∂θ∂θ′ .

(c) ((Fisher) information) I(θ) = Eθ[s(θ)s′(θ)].
(d) (Expected Hessian) H(θ) = Eθh(θ).

Theorem 6.11. Suppose ∂f(y;θ)
∂θ exists and

∂
∫
f(y;θ)dy
∂θ =

∫ ∂f(y;θ)
∂θ dy. Then

Eθs(θ) = 0.

Furthermore, if ∂2f(y;θ)
∂θ∂θ′ exists and

∂2
∫
f(y;θ)dy
∂θ∂θ′ =

∫ ∂2f(y;θ)
∂θ∂θ′ dy, then

I(θ) = −H(θ).
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Proof. We have

Eθ
∂`(θ)

∂θ
=

∫
∂ ln f(y; θ)

∂θ
f(y; θ)dy

=

∫
∂f(y; θ)

∂θ
dy

=
∂
∫
f(y; θ)dy

∂θ

=
∂1

∂θ
= 0.

The other result could be obtained by noting that

∂2`(θ)

∂θ∂θ′
=

1

f(y; θ)

∂2f(y; θ)

∂θ∂θ′
− ∂ ln f(y; θ)

∂θ

∂ ln f(y; θ)

∂θ′
.

�

In our conditional maximum likelihood framework,

Hn(θ̃n) =
∂2Qn(θ̃n)

∂θ∂θ′
=
∂2
(
− 1
T

∑T
t=1 `(θ̃n)

)
∂θ∂θ′

→p −H(θ0)

as θ̃n →p θ0, and

√
T
∂Qn(θ0)

∂θ
= − 1√

T

T∑
t=1

∂`(θ)

∂θ
→d N (0, I (θ0)) .

Then the above theorem shows that

√
T (θ̂n − θ0)→d N(0,−H−1(θ0))

and √
T (θ̂n − θ0)→d N(0, I−1(θ0)).

Note that if the objective function of conditional maximum likelihood estimation is given by

Qn(θ), then the objective function of maximum likelihood estimation is given by Qn(θ) + op(1).

Then by the remark after the proof of Theorem 6.1, the consistency and asymptotic normality of

maximum likelihood estimators follow directly from the consistency and asymptotic normality of

the corresponding conditional maximum likelihood estimator.

6.5 Other Topics

For conciseness, we have omitted many important topics in the general theory of extremum esti-

mation, such as efficiency, two-step estimators and so on. For more discussion about these topics,

see Newey and McFadden (1994, Section 5, 6, 8).
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There are also estimators whose objective function is not as nice as required by the assumptions

of the theorems in this chapter. Properties of estimators under such objective functions has been

studied by various authors. For example, for results for asymptotic normality under non-smooth

objective functions, see Newey and McFadden (1994, Section 7). Johansen and Nielsen (2019) give

conditions for uniform boundedness of M-estimator in sample size in time series linear regressions

where the objective function is possibly non-convex and non-continuous.
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7 Vector Autoregressions

A large part of the theory for weakly stationary vector process is completely analogous to its

counterpart of weakly stationary scalar process. Whenever this is the case, we shall point it out

and not elaborate on the very details.

7.1 Vector Linear Processes

An n-dimensional vector linear process {Xt} is a stochastic process that takes the form of

Xt =
∞∑
i=0

Φiεt−i

where εt ∼WN(0,Σ) is a white noise process with covariance matrix Σ, and Φi are matrices whose

(j, k)-th entry will be denoted by Φjk
i . The above process may be written using the lag operator as

Xt =
∞∑
i=0

ΦiL
iεt = Φ(L)εt,

where L is the lag operator that shift the series {εt} backwards.

Following similar arguments as in Chapter 4, we may easily show that if
∑∞

i=0(Φjk
i )2 <∞ for all

j and k, then
∑∞

i=0 Φiεt−i is a well defined random vector in the space of all n-dimensional random

vectors with finite covariance matrices in the mean square sense, and {Xt} is weakly stationary. If∑∞
i=0

∣∣∣Φjk
i

∣∣∣ <∞ for all j and k, we have that
∑∞

k=−∞ |γ(k)| <∞ where γ(·) is the autocovariance

function of {Xt}. The autocovariance function of the above linear process is given by

γ(k) =

∞∑
i=0

Φi+kΣΦ′i.

If
∑∞

i=0 i
∣∣∣Φjk

i

∣∣∣ <∞ for all j and k, we have the Beveridge-Nelson decomposition of Xt given by

Xt = Φ(1)εt − (X̃t − X̃t−1)

where X̃t =
∑∞

i=0 Φ̃iεt−i, Φ̃i =
∑∞

j=i+1 Φj .

The asymptotics for vector linear processes are also similar to their scalar counterpart. Given∑∞
i=0

∣∣∣Φjk
i

∣∣∣ <∞ for all j and k, we have that

1

T

T∑
t=1

Xt →p 0.

Given
∑∞

i=0 i
∣∣∣Φjk

i

∣∣∣ <∞ for all j and k, if {εt} is an iid sequence, or a martingale difference sequence

0 c© 2017-2021 by Bo Hu. All rights reserved.
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satisfying some Lindeberg or Lyapunov conditions (see Section 4.8), we have that

1√
T

T∑
t=1

Xt →d N(0,Φ(1)ΣΦ(1)′).

If

Yt =

∞∑
i=−∞

ΨiXt−i,

we say that {Yt} is obtained by applying the linear filter Ψ(L) =
∑∞

i=−∞ΨiL
i to {Xt}. If Φ(L)

and Ψ(L) are two linear filters with absolutely summable coefficients, then Φ(L)Ψ(L)Xt is well

defined for all weakly stationary {Xt}, as long as the dimensions of Φi, Ψi and Xt are appropriate

for matrix multiplication. Also, the filters, viewed as lag operator polynomials with matrix-valued

coefficients, when applied to weakly stationary time series, satisfies the usual algebraic rules of

regular polynomials with matrix-valued coefficients. However, we note here that Φ(L)Ψ(L) does

not necessarily equals Ψ(L)Φ(L) since the matrix multiplication operation is not commutative.

Now consider a linear filter Φ(L) =
∑∞

i=0 ΦiL
i such that det(Φ(z)) 6= 0 for all |z| ≤ 1 on the

complex plane. Then there exists ε > 0 such that Φ(z) is invertible for all |z| < 1 + ε and Φ−1(z)

has a power series expansion

Φ−1(z) =

∞∑
i=0

Υiz
i.

Then by a completely analogous argument as in the scalar case, we have that
∑∞

i=0 i
∣∣∣Υjk

i

∣∣∣ <∞ for

all j and k, and we may define Υ(L) =
∑∞

i=0 ΥiL
i as the inverse of Φ(L), denoted by Φ−1(L).

The autocovariance generating function for a weakly stationary vector processes {Xt} is defined

as

G(z) =
∞∑

k=−∞
γ(k)zk

where γ(k) is the autocovariance function of {Xt}.
It can be shown that if {Xt} is weakly stationary with autocovariance generating function

ΓX(z), and Y = Φ(L)Xt where Φ(L) has absolutely summable coefficients, then the autocovariance

generating function of {Yt} is given by

GY (z) = Φ(z)GX(z)Φ(z−1)′,

where Φ(z−1)′ denotes the transpose of Φ(z−1). As a consequence, it is easy to see that the linear

process Yt = Φ(L)εt where εt ∼WN(0,Σ) has autocovariance generating function Φ(z)ΣΦ(z−1)′.

Also, if {Xt} and {Yt} are independent weakly stationary processes with autocovariance gen-

erating functions ΓX(z) and ΓY (z) respectively, then the process {Xt + Yt} has autocovariance

generating function GX(z) +GY (z).

The spectral density of a weakly stationary vector process with autocovariance function γ(·)
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and autocovariance generating function G(z) is defined to be

f(λ) =
1

2π
G(e−iλ).

And similarly as in the scalar case, we have that

γ(k) =

∫ π

−π
eiλkf(λ)dλ.

7.2 Vector Moving Average Processes

A vector moving-average process of order q, abbreviated as VMA(q), is a process {Xt} following

Xt = µ+ Θ(L)εt = µ+ εt + Θ1εt−1 + Θ2εt−2 + · · ·+ Θqεt−q,

where µ is a constant vector, and εt ∼ WN(0,Σ). This process is always weakly stationary with

mean µ and autocovariance function

γ(k) =


∑q−k

i=0 Θi+kΣΘ′i, 0 ≤ k ≤ q,∑q+k
i=0 ΘiΣΘ′i−k, q ≤ k < 0,

0, |k| > q

where Θ0 is understood to be the identity matrix. In particular,

Cov(Xt) = γ(0) =

q∑
i=0

ΘiΣΘ′i.

Also, we have that

1

T

T∑
t=1

Xt →p µ,

and under appropriate conditions for εt, we have that

1√
T

T∑
t=1

(Xt − µ)→d N
(

0,Θ(1)ΣΘ(1)′
)
.

A VMA model could be estimated by MLE or CMLE. Suppose εt ∼ iid N(0,Σ), and we observe

X1, . . . , XT . Then we may write our model as X◦ = µ◦ + Aε◦ where X◦ = (X ′1, X
′
2, . . . , X

′
T )′,

µ◦ = (µ′, µ′, . . . , µ′)′, ε◦ = (ε′1−q, ε
′
2−q, . . . , ε

′
T )′, and A is an appropriate matrix whose entries

contain the parameters of the VMA process. Then we have X◦ =d N(µ◦, A(I ⊗ Σ)A′), where I is

the (T + q)-dimensional identity matrix. The log likelihood function is

C − 1

2
ln det(A(I ⊗ Σ)A′)− 1

2
(X◦ − µ◦)′(A(I ⊗ Σ)A′)−1(X◦ − µ◦)
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where C is some constant independent of the parameters.

Similarly, the (normalized) conditional log-likelihood function given the initial innovations

ε0, ε−1, . . . , ε1−q is

C

T
− 1

2
ln det(Σ)− 1

2T

T∑
t=1

ε′tΣεt.

When the initial values are not observed, we may set them to zero as an approximation. This

approximation is sensible only if the VMA process is invertible, which is the case if det(Θ(z)) 6= 0

for all |z| ≤ 1 where Θ(z) = I + Θ1z + . . .+ Θqz
q.

7.3 Vector Autoregressive Processes

A vector autoregressive process of order p, abbreviated as VAR(p), is a process {Xt} following

Xt = c+ Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt−p + εt, (7.1)

where c is a constant vector, and εt ∼WN(0,Σ).

The following theorem is a direct generalization of its univariate counterpart.

Theorem 7.1. Let {Xt} be a VAR(p) process given by Φ(L)Xt = c+ εt where Φ(L) = 1− Φ1L−
Φ2L

2 − · · · − ΦpL
p and εt ∼ WN(0, σ2). If det Φ(z) 6= 0 for all |z| ≤ 1, then {Xt} has a unique

causal weakly stationary solution given by

Xt = Φ(L)−1(c+ εt) = Φ−1(1)c+

∞∑
i=0

Υiεt−i

where
∑∞

i=0 Υiz
i is the power series expansion of Φ−1(z), and

∑∞
i=0 i |Υi| <∞.

Then mean µ of the VAR process is Φ−1(1)c, and the VAR process could be expressed in its

demeaned form:

Xt − µ = Φ1(Xt−1 − µ) + Φ2(Xt−2 − µ) + · · ·+ Φp(Xt−p − µ) + εt.

The autocovariance function γ(·) could be obtained from the Yule-Walker equations

γ(k) = Φ1γ(k − 1) + Φ2γ(k − 2) + · · ·+ Φpγ(k − p), k = 1, 2, . . . .

The first few autocovariances could be obtained using the VAR(1) representation of general VAR(p)

given by 

Xt

Xt−1

Xt−2

...

Xt−p+1


=



c

c

c
...

c


+



Φ1 Φ2 Φ3 · · · Φp

I 0 0 · · · 0

0 I 0 · · · 0
...

...
...

...

0 0 0 · · · 0





Xt−1

Xt−2

Xt−3

...

Xt−p


+



εt

0

0
...

0


.
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If we write the above representation as Yt = a+AYt−1 +Ut, and let Γ = Var(Yt), ΣU = Var(Ut) =

diag(Σ, O), then we have Γ = AΓA′+ΣU , and therefore vec(Γ) = (I−A⊗A)−1vec(ΣU ). Note that

Γ contains γ(0), . . . , γ(p−1). Once we obtain the initial values, we can obtain other autocovariances

by recursion using the Yule-Walker equation.

Also, we have that

1

T

T∑
t=1

Xt →p µ,

and under appropriate conditions for εt, we have that

1√
T

T∑
t=1

(Xt − µ)→d N
(

0,Φ−1(1)ΣΦ−1(1)′
)
.

The VAR models may be estimated by conditional maximum likelihood. Suppose that εt ∼
iid N(0,Σ). We rewrite our VAR(p) model as

Xt = ΠYt + εt

where Π = [c Φ1 Φ2 · · ·Φp] and Yt = (1, X ′t−1, X
′
t−2, . . . , X

′
t−p)

′. The conditional density f(Xt|Xt−1, Xt−2, . . .)

is given by

(2π)−n/2
(

det(Σ)
)−1/2

exp

(
−1

2
(Xt −ΠYt)

′Σ−1(Xt −ΠYt)

)
.

The (normalized) log-likelihood function is

C

T
− 1

2
ln det(Σ)− 1

2T

T∑
t=1

(Xt −ΠYt)
′Σ−1(Xt −ΠYt).

Maximizing the log-likelihood function yields the CMLE estimators

Π̂ =

(
T∑
t=1

XtY
′
t

)(
T∑
t=1

YtY
′
t

)−1

and

Σ̂ =
1

T

T∑
t=1

ε̂tε̂
′
t

where ε̂t = Xt − Π̂Yt is the residual. It is easy to see that the CMLE estimator is the same as the

OLS estimator. We may write our n-dimensional VAR system as n single equations, and do OLS

regression for each of the individual equations.
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Under the iid normality assumption we have that

QT =
1

T

T∑
t=1

YtY
′
t →p



1 µ µ µ · · · µ

µ γ(0) + µ2 γ(1) + µ2 γ(2) + µ2 · · · γ(p− 1) + µ2

µ γ(−1) + µ2 γ(0) + µ2 γ(1) + µ2 · · · γ(p− 2) + µ2

µ γ(−2) + µ2 γ(−1) + µ2 γ(0) + µ2 · · · γ(p− 3) + µ2

...
...

...
...

...

µ γ(1− p) + µ2 γ(2− p) + µ2 γ(3− p) + µ2 · · · γ(0) + µ2


.

We denote the limit by Q. Now we write

√
T (vech(Π̂)− vech(Π)) =


Q−1
T

1√
T

∑T
t=1 Ytεt1

Q−1
T

1√
T

∑T
t=1 Ytεt2

...

Q−1
T

1√
T

∑T
t=1 Ytεtn

 = (In ⊗Q−1
T )

1√
T

T∑
t=1

Zt

where vech(A) = (A11, A12, . . . , A1`, A21, A22, . . . , A2`, . . . , Am1, Am2, . . . , Am`)
′ for any m × ` ma-

trix, εti is the i-th component of εt, and Zt = (Y ′t εt1, Y
′
t εt2, . . . , Y

′
t εtn)′. It can be shown that {Zt}

is a martingale difference sequence, has finite fourth moment (and therefore satisfies the Lyapunov

condition), and a typical element of 1
T

∑T
t=1 ZtZ

′
t takes the form of

1

T

T∑
t=1

Xi1,t−k1εj1,tXi2,t−k2εj2,t =
1

T

T∑
t=1

Wt + E(εj1,tεj2,t)
1

T

T∑
t=1

Xi1,t−k1Xi2,t−k2 ,

where

Wt =
(
εj1,tεj2,t − E(εj1,tεj2,t)

)
Xi1,t−k1Xi2,t−k2

is a martingale difference sequence with finite second moments. Therefore, by a law of large numbers

for martingale difference sequence, 1
T

∑T
t=1Wt →p 0, and

1

T

T∑
t=1

Xi1,t−k1εj1,tXi2,t−k2εj2,t →p E(εj1,tεj2,t)E(Xi1,t−k1Xi2,t−k2).

As a consequence,

1

T

T∑
t=1

ZtZ
′
t →p EZtZ ′t = Σ⊗Q.

Then by a central limit theorem for martingale difference sequence, we have

1√
T

T∑
t=1

Zt →d N(0,Σ⊗Q),
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and √
T (vech(Π̂)− vech(Π)) = N(0,Σ⊗Q−1).

The asymptotic results could be derived under weaker conditions. For example, for independent

ut with bounded fourth moments (see Lütkepohl (2005, Lemma 3.1)), or martingale difference

sequence ut with bounded conditional 2 + δ moments (see Fuller (1996, Theorem 8.2.3)). The

essence is that we may find weaker conditions to guarantee that 1
T

∑
YtY

′
t →p Q and 1√

T

∑
εtY

′
t →d

MN(0,Σ, Q) where MN is the matrix normal distribution. Note that if ξ ∼ MN(M,U, V ), then

vec(ξ) ∼ N(vec(M), V ⊗U), and for non-random matrix C,D with appropriate dimensions, DξC ∼
MN(DMC,DUD′, CV C ′).

If we would like to test for the hypothesis that R · vech(Π) = r, we may apply the Wald test

statistic

W = T
(
R · vech(Π̂)− r

) (
R(Σ⊗Q−1)R′

)−1
(
R · vech(Π̂)− r

)′
.

Under the null,

W →d χ
2
m

where m is the number of restrictions tested. Note that under the null,

√
T (R · vech(Π̂)− r)→d N(0, R(Σ⊗Q−1)R′).

In particular, if we want to test the null hypothesis that Π = Π0, we may form the Wald test

statistic

W = T
(

vech(Π̂−Π0)
)′ (

Σ⊗Q−1
)−1

(
vech(Π̂−Π0)

)
= T tr

[(
Π̂−Π0

)′
Σ−1

(
Π̂−Π0

)
Q

]
.

Note that in the above expressions, Σ andQ can be replace respectively by 1
T

∑T
t=1 ε̂

2
t and 1

T

∑T
t=1 YtY

′
t .

Also, since

√
T (Σ̂− Σ) =

√
T

(
Σ̂− 1

T

T∑
t=1

εtε
′
t +

1

T

T∑
t=1

εtε
′
t − Σ

)
=

1√
T

T∑
t=1

(εtε
′
t − Σ) + op(1),

and {εtε′t} is iid, we have that

√
T (vech(Σ̂)− vech(Σ))→d N(0,Ξ)

where Ξ = E[vech(εtε
′
t − Σ)][vech(εtε

′
t − Σ)]′.

In fact, since [
vech(Π̂)− vech(Π)

vech(Σ̂)− vech(Σ)

]
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is a martingale difference sequence satisfying the Lyapunov condition and a law of large number

for its second moment, we have that

√
T

[
vech(Π̂)− vech(Π)

vech(Σ̂)− vech(Σ)

]
→d N

(
0,

[
Σ⊗Q 0

0 Ξ

])
.

Note that vech(Π̂)− vech(Π) and vech(Σ̂)− vech(Σ) are asymptotically orthogonal since

EYtεt`(εtiεtj − Σij) = 0

for all i, j, `. In particular, we can show that Eεt`εtiεtj = 0 for a mean-zero jointly normal εt by

sequential conditioning.

In the end of this section, we make a remark that since any VAR(p) model has a VAR(1) rep-

resentation, when we study properties of VAR processes, we may focus on the VAR(1) model, and

many results for VAR(p) models can be easily derived from the study of their VAR(1) representa-

tion.

7.4 Forecasting

The forecasting theory for multivariate linear processes is completely analogous to that of the

univariate case. We therefore shall not elaborate on it here.

7.5 Granger Causality

A concept that is directly related to forecasting in multivariate setting is the Granger-causality.

Granger-causality is a concept that tries to describe whether one economic variable helps to forecast

another. Let {xt} and {yt} be two (possibly multivariate) time series. Let Ft be the information

available for prediction up to time t. Let `(xt+h|G) be some measure of forecast imprecision for the

optimal h-step forecast of x based on the information set G. For example, we could take ` to be

the mean square error, as we shall do in the following. If

`(xt+h|Ft) < `(xt+h|Ft\{ys}s≤t)

for at least one h = 1, 2, . . ., we say that y causes x in Granger’s sense, or y Granger-causes x. If

both x Granger-causes y and y Granger-causes x, we say that (x′, y′)′ is a feedback system.

Though different measures of forecast imprecision lead to different definitions of Granger causal-

ity, we usually take ` to be the mean square error and replace the optimal forecast with the best

linear forecast. Also, we usually restrict our information set to be the information generated by

current and past values of x and y. In this setting, we say that y Granger-cause x if for at least

one h > 0,

MSE[L(xt+h|1, xt−1, xt−2, . . .)] > MSE[L(xt+h|1, xt−1, xt−2, . . . , yt−1, yt−2, . . .)].
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Apparently if (x′t, y
′
t)
′ is a system that admits an MA representation[

xt

yt

]
= µ+

∞∑
i=1

[
Θi,11 Θi,12

Θi,21 Θi,22

][
ε1,t−i

ε2,t−i

]
,

where (ε′1t, ε
′
2t)
′ is a white noise process with non-singular variance matrix, then y does not Granger-

cause x if and only if Θi,12 = 0 for all i = 1, 2, . . .. If (xt, yt)
′ admits a VAR(p) representation[

xt

yt

]
= c+

p∑
i=1

[
Φi,11 Φi,12

Φi,21 Φi,22

][
xt−i

yt−i

]
+ εt, (7.2)

then y does not Granger-cause x if and only if Φi,12 = 0 for all i = 1, 2, . . . , p. To test for Granger-

causality in this case, we may run a VAR of (7.2) and test for Φ1,12 = Φ2,12 = · · · = Φp,12 = 0.

Wald test could be used.

For more concepts and tests related to Granger-causality, see Lütkepohl (2005, Sec. 2.3.1 and

3.6). It should be pointed out that Granger-causality, first proposed by Granger (1969), is not an

indicator of the causality in the usual sense but an indicator of predictability. Also, the result of

Granger-causality test could be very sensitive to the choice of the lag p. See Hamilton (1994, p.

305) for details. See Dufour and Renault (1998) and Dufour et al. (2006) for discussions on the

issue of Granger causality when there are multiple sets of variables of interest.

7.6 Structural VAR

A structural VAR model for an n-dimensional vector process {Xt} is a model of the form

BXt = b+B1Xt−1 +B2Xt−2 + · · ·+BpXt−p + et

where Var(et) = Λ is a diagonal matrix. The corresponding VAR model in reduced form, given by

Xt = c+ Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt−p + εt

where Var(εt) = Σ, relates to its structural form through

b = Bc,

Bi = BΦi,

and

et = Bεt.

Due to the existence of B, structural VAR allows for contemporaneous relationships in the com-

ponents of Xt, while reduced form VAR does not. Also, the diagonality of Λ restricts components

in et to be uncorrelated, while in the reduced form VAR, components in εt can be correlated. In
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particular, when et is Gaussian, components in et are independent. We shall call et the structural

innovations, and εt the reduced form errors.

If we allow B to be any n × n matrix, then B is not identified, meaning that we have more

than one structural VAR that gives the same reduced form VAR. For example, if we pre-multiply

both sides of the structural VAR by any n×n matrix C such that its column vectors are mutually

orthogonal, we still get a structural VAR. However, as long as C 6= I, the two structural VARs are

not the same, although they have the same reduced form VAR.

Suppose we have identified a reduced form VAR. Then if we can uniquely identify B, we can

identify b and Bi’s by the relationships we observed above. To identify a structural VAR model,

we need to put enough restrictions on the contemporaneous relationship matrix B. Since

BΣB′ = Λ,

the diagonality of Λ generates r(r − 1)/2 restrictions on B. So we need to impose additional

r(r+ 1)/2 restrictions on B for identification. One of the most simple and popular ways to restrict

B is to specify B to be a lower triangular matrix such that its diagonal contains all ones. These

zero-one restrictions then serve as the additional r(r + 1)/2 restrictions that makes the structural

VAR identified. That B is lower triangular and εt = Bet implies that the first component in εt,

denoted by εt1, is more “causal” than any other εti’s. And εti provides information about εtj for

any j > i. This then implies a recursive causal chain of the innovations we consider in our model.

Or put it in another way, when we formulate Xt, we should order the variables under consideration

according to the causal chain we have in mind. Structural VARs identified through the above

scheme are called recursive structural VARs.

For a covariance matrix Σ, we can decompose it as

Σ = LL′

where L is a unique lower triangular matrix. Such a decomposition is called the Cholesky decom-

position. Also, we have L−1ΣL−1′ = I. This implies that

B = Λ1/2L−1.

Therefore, to estimate a recursive structural VAR model, we may first estimate its reduced form by

OLS, obtain its MLE estimator for Σ and conduct the Cholesky decomposition on the estimated

Σ. In the end, we solve the above equality for the undetermined parameters in B and Λ. Since the

model is just identified, estimators obtained in this way is exactly the full-information maximum

likelihood estimator (FIML).

There are many other identification strategies. Interested readers may referred to, e.g., Hamilton

(1994, Section 11.6) or Stock and Watson (2016, Chapter 4), among many others.

As an example, Sims (1980) consider a system of six variables for an empirical macroeconomic
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model: money, real GNP, unemployment, wages, price level and import prices. To see the responses

of the system to random shocks, the author utilize the recursive identification strategy where the

variables are ordered as above. That is, money shocks are assumed to affect all other variables of

the system instantly, while the import price shocks only affect the import prices.

7.7 Impulse Responses and Variance Decomposition

We may write

Xt = µ+

∞∑
i=0

Υiεt−i = µ+

∞∑
i=0

Aie
∗
t

where e∗t is et normalized to have identity variance,

Ai = ΥiB
−1Λ1/2.

Then the (p, q)-th entry of Ai, denoted by Ai,pq, can be interpreted as the response of the p-th

variable i periods later to an impulse in the q-th structural innovations.

The k-step (linear) forecast error may be written as

Xt+k − X̂t+k|t =
k−1∑
i=0

Υiεt+k−i =
k−1∑
i=0

Aie
∗
t+k−i.

The variance of the forecast error for the p-th variable is

k−1∑
i=0

 r∑
j=1

A2
i,pj

 .

The ratio ∑k−1
i=1 A

2
i,pq∑k−1

i=0

(∑r
j=1A

2
i,pj

)
then gives the contribution of the q-th structural innovation to the forecast error variance of the

p-th variable.

Once we establish the asymptotic normality of the coefficient estimator of the VAR process,

we may use the Delta method to establish the asymptotic normality and obtain the (pointwise)

confidence interval (bands) of the impulse responses and the variance decomposition ratios. See

Lütkepohl (1990) for details. Runkle (1987) suggests using simulation or bootstrap methods to

obtain the confidence intervals. See also Kilian (1998, 1999), Sims and Zha (1999), Gonçalves and

Kilian (2004) and Inoue and Kilian (2020).
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7.8 Order Selection for VAR Models

We may use the information criteria to select the order of VAR models. We consider three criteria.

The Akaike Information Criterion (AIC) for an VAR(p) model is defined as

AIC(p) = ln det(Σ̂) + 2
pn2

T

where Σ̂ is the ML estimate of Σ, n is the dimension of the random vector Xt, and T is the sample

size. Note that pn2 is the number of free parameters to estimate in the model (if we ignore the

constant term). The Bayesian Information Criteria, or the Schwarz Criterion, for an VAR(p) model

is defined as

BIC(p) = ln det(Σ̂) +
pn2 lnT

T
.

The Hannan-Quinn Criterion for an VAR(p) model is defined as

HQ(p) = ln det(Σ̂) + 2
pn2 ln lnT

T
.

We choose the order p so that either AIC or BIC or HQ is minimized. It is know that AIC

tends to choose an order that minimized the forecast mean square error, while BIC or HQ tends to

choose an order that is consistent. For details, see, e.g., Lütkepohl (2005, Chapter 4).

7.9 Bayesian VAR

A very popular way to estimate VAR models is through Bayesian approaches. We shall not go into

details here but refer readers to references, e.g., Hamilton (1994, Chapter 12) or Lütkepohl (2005,

Sec. 5.4).

7.10 Vector Autoregressive Moving-Average Model

Just as in the univariate case, we have a vector version of autoregressive moving-average model,

abbreviated as VARMA. The theory of VARMA models is more involved, and we shall refer the

readers to, e.g., Lütkepohl (2005, Part IV).

7.11 Some Results of Matrix Algebra

Suppose that A,B,C,D are matrices. Suppose that in each of the following entries the dimensions

of the matrices are appropriate such that the operations of matrices are well defined. We have

1. (A⊗B)′ = A′ ⊗B′.
2. (A⊗B)−1 = A−1 ⊗B−1.

3. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

4. vech(A) = vec(A′).

5. (A⊗B)vech(C) = vech(ACB′).
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6. tr(ABC) = tr(CAB).

7. vech(A)′vech(B) = tr(AB′).

8. vec(ABC) = (C ′ ⊗A)vec(B).
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8 State Space Models and the Kalman Filter

8.1 State Space Models

A typical state space model consists of a measurement equation

yt = Awt +Bxt + ut

where yt is a random vector of interest, xt is a vector of exogenous or predetermined variables, wt

is a vector of possibly hidden states, and a transition equation

wt = Twt−1 + vt

which specifies the law of motion of the state. The two error terms ut and vt are assumed to be

serially and crossly uncorrelated with mean zero and variances R and Q, respectively. We assume

that the initial value w0 is uncorrelated with ut and vt, and that {ut, vt} is jointly normal.

The state space models are very useful since many systems in economics involve unobserved

variables, and many econometric models have state space model representation. For example, an

ARMA(p, q) model specified by α(L)yt = θ(L)εt with α(L) = 1 − α1L − · · · − αpLp and θ(L) =

1 + θ1L+ · · ·+ θqL
q may be written in the state space representation

yt = θ(L)zt,

α(L)zt = εt

where zt = α−1(L)εt. zt, as an AR(p) process, has an VAR(1) representation (as in the transition

equation above). As we shall see later in this chapter, we may obtain the exact likelihood of an

ARMA process by its state space model representation.

8.2 The Kalman Filter

We define the filtration {Ft} (an increasing sequence of σ-algebras or more intuitively, “information

sets”) by

Ft = σ (y1, y2, . . . , yt) .

By exogeneity or predeterminacy of xt, we mean that xt is Ft−1-measurable, or xt is “known” given

the information Ft−1. We denote

ws|t = E(ws|Ft),

ys|t = E(ys|Ft),

Ωs|t = Var(ws|Ft),
0 c© 2017-2021 by Bo Hu. All rights reserved.
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and

Σs|t = Var(ys|Ft)

where E(·|Ft) is the conditional expectation given Ft and Var(·|Ft) is the conditional variance given

Ft. For a random variable X, its conditional variance given a σ-algebra F is defined by

Var(X|F) = E
[(
X − E(X|F)

)2∣∣∣∣F]
Since yt = A(T tw0 + T t−1v1 + · · ·+ Tvt−1 + vt) +Bxt + ut, we have that E(ysv

′
t) = E(ysu

′
t) = 0

for all s < t. Under normality, this implies that {ys}t−1
s=1 is independent of vt and ut. Then we have

that

E(vt|Ft−1) = E(ut|Ft−1) = 0.

Taking conditional expectations with respect to Ft−1 on both sides of the measurement equation

and the transition equation, we obtain

wt|t−1 = Twt−1|t−1,

yt|t−1 = Awt|t−1 +Bxt.

It is also easy to calculate the conditional variances by definition and obtain

Ωt|t−1 = TΩt−1|t−1T
′ +Q

and

Σt|t−1 = AΩt|t−1A
′ +R.

The above step of getting the conditional distributions of wt and yt given information up to time

t− 1 is labeled prediction.

Write

yt − yt|t−1 = A(wt − wt|t−1) + ut.

The prediction step implies that[
wt

yt

] ∣∣∣∣Ft−1 =d N

([
wt|t−1

yt|t−1

]
,

[
Ωt|t−1 Ωt|t−1A

′

AΩt|t−1 Σt|t−1

]
.

)

Since wt|t = E(wt|yt,Ft−1) and Ωt|t = Var(wt|yt,Ft−1), by Theorem 5.10, we have

wt|t = wt|t−1 + Ωt|t−1A
′Σ−1
t|t−1(yt − yt|t−1)

and

Ωt|t = Ωt|t−1 − Ωt|t−1A
′Σ−1
t|t−1AΩt|t−1.
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The above procedure is labeled updating since we updated the conditional distributions of wt

given that we have a new observation yt. We may see that the updating rule for {wt}, given by

ww|t − wt|t−1, is proportion to the forecast error of {yt}:

ww|t − wt|t−1 = Ωt|t−1A
′Σ−1
t|t−1(yt − yt|t−1).

We sometimes call the proportion Kt = Ωt|t−1A
′Σ−1
t|t−1 the Kalman gain. The Kalman gain can

thus be interpreted as the weight assigned to the information that is newly available at time t.

8.3 Kalman Filter and Maximum Likelihood Estimation

We may obtain the maximum likelihood function of (y1, . . . , yT ) as follows:

(a) Start from an initialization value w0|0,Ω0|0. For given parameters (denoted by θ), set the

step-zero log likelihood L0(θ) = 0.

(b) Given wt−1|t−1,Ωt−1|t−1, update to get wt|t−1,Ωt|t−1, yt|t−1,Σt|t−1. Then yt|Ft−1 =d N(yt|t−1,Σt|t−1).

Then we may write down the log likelihood function `t(θ) of yt|Ft−1 as

`t(θ) = −n
2

ln 2π − 1

2
ln det Σt|t−1 −

1

2
(yt − yt|t−1)′Σ−1

t|t−1(yt − yt|t−1)

and set Lt(θ) = Lt−1(θ) + `t(θ).

(c) Update to obtain wt|t,Ωt|t.

(d) Repeat (b) and (c) until we get LT (θ).

8.4 Smoothing

Often we are interested in estimating wt given all the observations (y1, . . . , yT ). To obtain wt|T =

E(wt|FT ), we note that since

yt+k = A(T k−1wt+1 + T k−2vt+2 + · · ·+ vt+k) +Bxt+k + ut+k,

given wt+1 and Ft, yt+k is uncorrelated with, and therefore independent of, wt, we have that

E(wt|wt+1,FT ) = E(wt|wt+1,Ft).

Since wt+1 − wt+1|t = T (wt − wt|t) + vt+1, we have Cov(wt, wt+1|Ft) = Ωt|tT
′, and then

E(wt|wt+1,Ft) = wt|t + Jt(wt+1 − wt+1|t)

where Jt = Ωt|tT
′Ω−1
t+1|t. Note Jt is obtained by projection. Then

wt|T = E
(
E (wt|wt+1,FT )

∣∣∣∣FT) = wt|t + Jt(wt+1|T − wt+1|t).
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To obtain Ωt|T = Var(wt|FT ), write the above equation as wt|T − wt|t = Jt(wt+1|T − wt+1|t).

Since E(ws|T |Ft) = ws|t, we have that

E(ws|T − ws|t)(ws|T − ws|t)′ = Ews|Tw′s|T − Ews|tw′s|t.

Similarly, we may derive

Ews|tw′s|t = Ewsw′s − E(ws − ws|t)(ws − ws|t)′ = Ewsw′s − Ωs|t.

Now it is easy to deduce that

Ωt|T = Ωt|t + Jt(Ωt+1|T − Ωt+1|t)J
′
t.

It should be noted that without normality, the Kalman filter does not provide the conditional

mean and variance of the state variables. However, if we take Ft as the linear span of (y1, · · · , yt),
and view E(·|Ft) and Var(·|Ft) respectively as the projection on Ft and the variance of the Ft
projection error, then all previous derivation continue to hold, and the Kalman filter yields the

minimum MSE linear estimate of the state variables.

8.5 Markov Chains

Let the underlying probability space be (Ω,F ,P). For our purposes it suffices to consider time-

homogeneous Markov chains with finite state spaces in discrete-time.

Let {Xn} be a sequence of random variables taking values in a finite set {a1, a2, . . . , aN}. Let

{Gn} be an increasing sequence of σ-algebras (information sets) such that · · · ⊂ Gt ⊂ Gt+1 ⊂ · · · ⊂
F . We say that {(Xt,Gt)} is a Markov chain if

P(Xt = aj |Gt−1) = P(Xt = aj |Xt−1)

for all j and t. If in addition, P(Xt = ai|Xt−1) is independent of time t, we say that the Markov

Chain is time-homogeneous. We usually take Gt = σ(X1, X2, . . . , Xt), just as in the previous

chapter. In that case, we say that {Xt} itself is a Markov chain, or simply that {Xt} is a Markov

chain.

From now on, we assume that {Xt} is time-homogeneous and denote

P(Xt = aj |Xt−1 = ai) = pij .
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The transition matrix of the Markov chain is a matrix defined as

P =


p11 p12 · · · p1N

p21 p22 · · · p2N

...
...

...

pN1 pN2 · · · pNN .


It is obvious that each row of P sums up to one.

8.6 Hamilton’s Markov Switching Model

The Hamilton’s Markov switching model is given by

yt = µst + wt,

and

α(L)wt = εt

where yt is the observed variable, α(z) = 1 − α1z − · · · − αpzp, {st} denotes the state, which is

assumed to be a Markov chain and independent of Ft−1 = σ(y1, y2, . . . , yt−1), and εt ∼ iid N(0, σ2).

Note that in this model, the mean of yt is dependent on the state st.

The Hamilton’s filter has two steps, i.e., prediction and updating. We first consider the case in

which wt is AR(1). For notation convenience, we denote by p(X|G) the conditional density function

of X given information set G. To predict, we note

p(st, st−1|Ft−1) = p(st|st−1)p(st−1|Ft−1)

and

p(yt|Ft−1) =
∑
st,st−1

p(yt|st, st−1,Ft−1).

To update, note that

p(st, st−1|Ft) =
p(yt|st, st−1,Ft−1)p(st, st−1|Ft−1)

p(yt|Ft−1)
.

To start the algorithm, we set p(s0|F0) to be the unconditional probability of the Markov chain.

Also note that p(st|Ft) can be obtained by marginalizing p(st, st−1|Ft).
For general AR(p) process of wt, we may look at p(st, . . . , st−p|Ft−1) and p(st, . . . , st−p|Ft) in

place of p(st, st−1|Ft−1) and p(st, st−1|Ft), respectively.

In the smoothing step, we obtain p(st|FT ). We look at the AR(1) case first. We start from

p(sT , sT−1|FT ). We have that

p(st+1, st, st−1|FT ) = p(st−1|st+1, st,FT )p(st+1, st|FT )
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where

p(st−1|st+1, st,FT ) = p(st−1|st+1, st,Ft) = p(st−1|st,Ft).

Note that the first equality is due to the AR(1) property that

p(yt+k|st+1, st, st−1,Ft) = p(yt+k|st+1, st,Ft)

for all k > 0. The second equality is due to that

p(st+1|st, st−1,Ft) = p(st+1|st,Ft)

and the Bayes formula. The term p(st−1|st,Ft) can be obtained by

p(st−1|st,Ft) =
p(st, st−1|Ft)
p(st|Ft)

using results in the prediction and updating step. In the end, p(st, st−1|FT ) and p(st−1|FT ) can be

obtained by marginalization.

For general AR(p) process of wt, we may use

p(st+1, . . . , st−p|FT ) = p(st−p|st+1, . . . , st−p+1,FT )p(st+1, . . . , st−p+1|FT ).

Note that

p(st−p|st+1, . . . , st−p+1,FT ) = p(st−p|st+1, . . . , st−p+1,Ft)

= p(st−p|st, . . . , st−p+1,Ft)

=
p(st, . . . , st−p,Ft)
p(st, . . . , st−p+1,Ft)

.
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9 Conditional Heteroskedasticity

Sometimes we are interested in not only the level of a time series, but also the second moment

information of it. For example, volatility is the standard deviation of (log) returns of a financial

asset. Volatility of financial assets is usually time varying, meaning that it is subject to large

changes over time. Since volatility is a measure of risk, it is an important factor in asset pricing.

For example, the well-known Black-Scholes formula for the price of a European call option is given

by

ct = PtΦ(x)−Kr−`Φ(x− σt
√
`)

and

x =
ln(Pt/Kr

−`)

σt
√
`

+
1

2
σt
√
`,

where Pt is the current price of the underlying stock corresponds to the option, r is the risk-free

interest rate, ` is the time to expiration, K is the strike price, Φ(·) is the cumulative distribution

function of the standard normal distribution, and σt is the conditional standard deviation of the log

return of the underlying stock. This chapter is devoted to models of conditional standard deviation.

9.1 The ARCH Model

Let {yt} be the time series of interest and {Ft} be a filtration representing the information flow.

Let µt = E(yt|Ft−1) and σ2
t = Var(yt|Ft−1) be the conditional mean and the conditional variance

of yt given Ft−1, respectively.

Suppose {yt} follows an AR(p) process

yt = φ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + ut,

where ut ∼ WN(0, σ2). If all roots of the polynomial φ(z) = 1 − φ1z − · · · − φpzp lie outside the

unit circle, the series is weakly stationary, and has constant unconditional mean and unconditional

variance. If we let Ft−1 be the σ-algebra generated by all innovations ut (and therefore all yt) prior

to t, we have

µt = φ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p,

i.e., the conditional mean is time varying. Similarly, the conditional variance of a weakly stationary

time series can also be time varying. A popular model for time varying conditional variance is the

Autoregressive Conditional Heteroskedastic (ARCH) model proposed by Engle (1982).

The ARCH model assumes that ut is serially uncorrelated but dependent. To be specific, an

ARCH(m) model assumes that

ut = σtεt,

0 c© 2017-2021 by Bo Hu. All rights reserved.
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where {εt} is a sequence of iid random variables with mean zero and variance one, and

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m

for some α0 > 0 and αi ≥ 0. The coefficients αi must satisfy some conditions so that the uncondi-

tional variance of ut is finite. We usually take εt to be a normal or a Student’s t random variable.

It is easy to verify that σ2
t = Var(ut|Ft−1). Note that we may also represent the above ARCH

process as

u2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m + wt (9.1)

where wt is a white noise process. Obviously, we have σ2 = α0/(1 − α1 − · · · − αp). For the

unconditional variance to exist, it requires that α1 + · · ·+ αp < 1.

ARCH model is a simple and easy to use model. One good feature of the ARCH model is that

even if εt is normal, the unconditional distribution of ut generated from ARCH has a fatter tail

than a normal distribution. This fat tail phenomenon appears frequently in finance. However, it

does have some drawbacks. First, ARCH models assume that positive and negative shocks have

the same effects on the variance of the time series since the shocks enter into volatility in the form

of squares. Second, the ARCH models are restrictive in term of the possible ranges of the ARCH

parameters. Third, ARCH models are likely to overpredict the volatility in finance (see Tsay (2010,

p. 119)).

The test for the existence of ARCH effect is based on equation (9.1). Once we obtain ut or

estimated ût, we test for the null hypothesis that βi = 0, i = 1, 2, . . . ,m jointly in the regression

u2
t = β0 + β1u

2
t−1 + · · ·+ βmu

2
t−m + et.

A Wald test or an F -test may be applied.

9.2 Estimating ARCH Models

The ARCH models can be estimated by conditional maximum likelihood. Suppose that we have

data up to time T . The conditional density function of (um+1, um+2, . . . , uT ) given (u1, u2, · · · , um)

is

f(um+1, . . . , uT |u1, . . . , um) = f(uT |Ft−1)f(uT−1|Ft−2) · · · f(um+1|Fm).

Under normality of εt, we have

f(um+1, . . . , uT |u1, . . . , um) =
T∏

t=m+1

1√
2πσt

exp

(
− u2

t

2σ2
t

)
,

112



and the log likelihood function (ignoring the constant part) is given by

`(εm+1, εm+2, . . . , εT |α0, α1, . . . , αm) = −1

2

T∑
t=m+1

lnσ2
t −

1

2

T∑
t=m+1

u2
t

σ2
t

,

where σ2
t is a function of α0, α1, . . . , αm.

When ut is not directly observable but comes from a regression

yt = x′tβ + ut,

we may replace ut with yt − x′tβ in the above expression of likelihood and estimate β and the

α’s jointly. We may also assume that the conditional distributions are Student’s t distributions

or the generalized error distribution (GED). The likelihood functions could be obtained similarly

by sequential conditioning. Under some conditions, the quasi-maximum likelihood estimation also

generates consistent estimators. See Hamilton (1994, p. 663).

The ARCH order m could be determined using the PACF of u2
t .

9.3 The GARCH Models

There are many variants to the ARCH models. One of the most popular class of variants to ARCH

is the generalized ARCH model by Bollerslev (1986). If ut = yt−µt follows a GARCH(m, s) model,

then

ut = σtεt,

σ2
t = α0 + α1u

2
t−1 + · · ·+ αmu

2
t−m + β1σ

2
t−1 + · · ·+ βsσ

2
t−s,

where εt is a sequence of iid random variables with mean zero and variance one, α > 0, αi ≥ 0, βj ≥
0, and

∑m∨s
i=1 (αi+βi) < 1 (αi or βi are set to zero if they do not exist). The unconditional variance

is Eu2
t = α0/(

∑m∨s
i=1 (αi + βi)). Note that GARCH equation could be written as

u2
t = α0 + (α1 + β1)u2

t−1 + · · ·+ (αp + βp)u
2
t−p + wt − β1wt−1 − · · · − βswt−s

where p = m∨s and wt = u2
t −σ2

t is a white noise process. This implies that {u2
t } is an ARMA(m∨

s, s) process.

We may continue to use the maximum likelihood estimation to estimate GARCH models, pro-

viding that the starting values of the volatility are assumed to be known. For issues regarding the

choice of initialization values, one may refer to, e.g., Bollerslev (1986).

In both ARCH and GARCH models, when the conditional mean function is not known, we may

first estimate the conditional mean function, treating the ARCH/GARCH effect as non-existent.

Then we use the fitted residuals as an observed series and use their ARMA representations to

estimate the ARCH/GARCH parameters. Although the properties of such estimators are complex

and not clearly known, in practice it turns out to provide good approximations. See Tsay (2010,
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p. 140).

9.4 The GARCH-M Model

Since volatility is a measure of risk, it is usually priced in finance. Financial returns are there-

fore dependent on the volatility of their underlying assets. One model for financial returns that

incorporates volatility as a price factor is the GARCH-M model, or the GARCH-in-mean model.

A version of the model was first proposed by Engle et al. (1987). A GARCH-M model takes the

form of

yt = x′tγ + δσ2
t + ut,

ut = σtεt,

σ2
t = α0 + α1u

2
t−1 + · · ·+ αmu

2
t−m + β1σ

2
t−1 + · · ·+ βsσ

2
t−s.

Note that yt|xt,Ft−1 =d N(x′tγ + δσ2
t , σ

2
t ) under the normality assumption of εt. The GARCH-M

model could therefore be estimated by conditional maximum likelihood.

We could also have other specification. For example, we could have yt = x′tγ + δσt + ut or

yt = x′tγ + δ lnσ2
t + εt.

9.5 The EGARCH Model

Nelson (1991) propose the exponential GARCH (EGARCH) model. If ut follows an EGARCH

model, then

ut = σtεt,

lnσ2
t = π0 +

∞∑
i=1

πi (|εt−i| − E |εt−i|+ νεt−i) ,

where εt is iid with mean zero and unit variance.

The parameter ν in the EGARCH model can generate asymmetric dynamics in volatility. When

ν = 0, a positive shock to ε (and therefore the level y) has the same effect on the volatility as a

negative shock of the same magnitude. When −1 < ν < 0, a positive shock has a weaker effect

on the volatility than a negative shock of the same magnitude. When ν < −1, positive shocks

and negative shocks generate effects of different directions. If the πs are positive and ν < 1, the

model generates the so called leverage effect: the negative correlation between asset returns and

their volatilities.

To estimate the EGARCH models, one has to give a parametric specification for the infinite

sum. Usually, as in the ARMA models, we assume that π(L) =
∑

i=1 πiL
i can be expressed as the

ratio of two finite order lag polynomials. As a consequence, the model may be parameterized in an

ARMA form as

lnσ2
t = β0 + β1 lnσ2

t−1 + · · ·+ βs lnσ2
t−m + α1 (|εt−1| − E |εt−1|+ νεt−1)

+ · · ·+ αm (|εt−m| − E |εt−m|+ νεt−m) .

114



Given a distributional specification of εt, we may estimate the model with conditional maximum

likelihood estimation.

9.6 Other Models of Conditional Heteroskedasticity

There are many other variants to the ARCH models that appear in the study of financial econo-

metrics. The threshold GARCH model proposed by Glosten et al. (1993) captures the asymmetric

effect by specifying the dynamics of conditional variance on top of the basic GARCH setting as

σ2
t = α0 +

m∑
i=1

(αi + γiIt−i)u
2
t−i +

s∑
i=1

σ2
t−i,

where It is an indicator function defined by

It =

1, if ut ≤ c,

0, otherwise

where c is a constant that represents some threshold. This model can be estimated by conditional

maximum likelihood.

A time series yt is said to follow an RCA(p) model if

yt = φ0 +

p∑
i=1

(φi + δit)yt−i + εt

where δt = (δ1t, δ2t, . . . , δpt)
′ is a sequence of independent random vectors with mean zero and

variance Ωδ, and {δt} is independent of {εt}. The conditional mean of yt is

µt = φ0 +

p∑
i=1

φiyt−i,

and the conditional variance of the model is

σ2
t = σ2

ε + (yt−1, . . . , yt−p)Ωδ(yt−1, . . . , yt−p)
′.

This model could be estimated by conditional maximum likelihood estimation.

Another way to generate time-varying volatility into the model is to introduce an innovation

to the conditional variance equation of ut. Such models are called stochastic volatility models. A

stochastic volatility model takes the form of

ut = σtεt,

lnσ2
t = α0 + α1 lnσ2

t−1 + · · ·+ αm lnσ2
t−m + vt,
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where vt are iid normal random variables with mean zero and variance σ2
v , and {εt} and {vt} are

independent. To estimate these models, we need to use quasi-maximum likelihood with the Kalman

filter, or use Markov chain Monte Carlo (MCMC) method.

9.7 Multivariate GARCH

We may easily generalize the GARCH model to the multivariate setting. A multivariate GARCH

model takes the form of

yt = Πxt + ut,

Ht = E(utu
′
t|yt−1, yt−2, . . . , xt−1, xt−2, . . .),

Ht = A0 +A1ut−1u
′
t−1A

′
1 + · · ·+Amut−1u

′
t−1A

′
m +B1Ht−1B

′
1 + · · ·+BsHt−sB

′
s,

where y and x are vectors, u is a vector white noise, and H,A and B are matrices. To estimate

the model, we continue to use conditional maximum likelihood, but usually we need to restrict the

parameters so that the numerical maximization becomes feasible. For example, we usually restrict

Hs to be diagonal. Sometimes we also restrict A and Bs to be diagonal
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10 Nonstationary Time Series

Studies have shown that many of the financial and aggregate macroeconomic time series exhibit

features of random walk or nonstationarity. Influential examples include Hall (1978), Nelson and

Plosser (1982) and Marsh and Merton (1986).

10.1 The Invariance Principle

Let the probability space be (Ω,F ,P). A continuous-time stochastic process W = (Wt)t∈R+ is

called a standard Brownian motion (or a Wiener process) if

(a) W0(ω) = 0 for all ω ∈ Ω,

(b) The mapping t 7→Wt(ω) is a continuous function for all ω ∈ Ω (continuous sample paths).

(c) For every t, h ≥ 0, Wt+h −Wt is independent of (Ws)s≤t, and has a normal distribution with

mean zero and variance h (independent Gaussian increments).

A vector Brownian motion B = (Bt)t∈R+ with covariance matrix Ξ is the stochastic process

(Ξ1/2Wt) where Wt is a vector Brownian motion whose components are independent standard

Brownian motions.

Let {wt}t=1,2,... be a sequence of m-dimensional random variables. Define

BT (r) =
1√
T

[Tr]∑
t=1

wt

for 0 ≤ r ≤ 1. If Bn →d B where B is a vector Brownian motion with covariance matrix

Ξ = lim
n→∞

1

T
E

(
T∑
t=1

wt

)(
T∑
t=1

wt

)′

provided that Ξ exists, then we say that {wt} satisfies the invariance principle (IP) or functional

central limit theorem (FCLT). It is easy to see that Ξ is the long-run variance of {wt}. It is well

know that if {wt} is an iid sequence with Cov(wt) = Σ, then it satisfies the IP with covariance Σ.

This is called the Donsker’s theorem. See, e.g., Billingsley (1999, Chapter 14).

The invariance principle becomes very powerful when applied with the continuous mapping

theorem: if Xn →d X where X has distribution P and f is continuous -a.s., then f(Xn)→d f(X).

For example, let Bn →d B. Since the function f from the space of all continuous functions on [0, 1]

to R defined by f(g) =
∫ 1

0 g(r)dr is continuous, we have that
∫ 1

0 BT (r)dr →d

∫ 1
0 B(r)dr. Similarly,

we have results like
∫ 1

0 rBT (r)dr →d

∫ 1
0 rB(r)dr. Also, we have BT (1) →d B(1), which implies

that

BT (1) =
1√
T

T∑
t=1

wt →d N(0,Ξ).

Therefore, the functional central limit theorem implies the central limit theorem. Actually, the
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functional central limit theorem implies much more than the central limit theorem.

The invariance principle holds not only for iid sequences, but also for heteroskedastic and

serially dependent series, given that the heteroskedasticity and serial dependence are appropriately

controlled. For example, IP holds for sequences that satisfy certain mixing conditions and also for

martingale difference sequences that satisfies the conditions in Theorem 2.31. See, e.g., McLeish

(1974, 1977), Kuelbs and Philipp (1980), Herrndorf (1983, 1984a,b, 1985), Peligrad (1985), Eberlein

(1986), Phillips and Durlauf (1986) and Phillips and Solo (1992). Also, IP holds for general linear

processes.

Theorem 10.1. Let

wt = Φ(L)εt =
∞∑
i=0

Φiεt−i

where
∑∞

i=1 i |Φi| <∞ and εt ∼ iid (0,Σ). Then

1√
T

[Tr]∑
t=1

wt →d B

where B is a Brownian motion with covariance matrix Φ(1)ΣΦ(1)′.

Proof. The series {wt} admits the Beveridge-Nelson decomposition representation

wt = Φ(1)εt − (et − et−1)

where et =
∑∞

i=0

∑∞
j=i+1 φjεt−i. Note that by Chebyshev’s inequality et = Op(1) uniformly in t.

Then we have

1√
T

[Tr]∑
t=1

wt = Φ(1)
1√
T

[Tr]∑
t=1

εt +
1√
T

(eTr − e0)→d B

where B is a Brownian motion with covariance matrix Φ(1)ΣΦ(1)′. �

Phillips (1987a) shows that under suitable weak dependence and heteroskedasticity conditions

for wt, we may establish an asymptotic expansion for BT (r) given by

BT (r) =d B(r) +R

where R could be Op(T
−1/2) or Op(T

−1), depending on the third-order cumulant of the process

BT (r).

10.2 Introduction to Stochastic Calculus

Before we introduce our important results, we first introduce the idea of stochastic integral. The

formal theory of stochastic integral is very involved. We will just give some of the main ideas here.

Let M = {M(t)} be a continuous-time martingale process with respect to some filtration (Ft)t≥0
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and X = {X(t)} be a continuous-time stochastic process that is adapted to (Ft). Recall that if g

is a continuous real function and h is of bounded variation on [a, b], then for the Riemann sum

n−1∑
i=0

g(si)(h(ti+1)− h(ti))

where a = t0 < t1 < · · · < tn = b is a partition of [a, b] and si ∈ [ti, ti+1], its limit exists as the

partition becomes finer and finer, and the limit, which we denote by the Riemann-Stieltjes integral∫ b
a g(t)dh(t), is independent of the choice of si. However, if we apply this idea to X and M and try

to figure out the limit (in some probability sense) of the partial sum

n−1∑
i=0

X(si)(M(ti+1)−M(ti)),

we find that the limit depends on the choice of si. This is because M is not of bounded variation.

We therefore define the Ito integral as

∫ b

a
X(t)dM(t) = plim

n−1∑
i=0

X(si)(M(ti+1)−M(ti)),

where the limit is taking as the partition becomes finer and finer. It is known that the Ito integral

is well defined if M is square integrable, that is, EM2(t) <∞ for all t.

To state the Ito formula, which plays the role of the fundamental theorem of calculus in the

stochastic integral setting, we define the quadratic variation [X]t of a stochastic process (Xt) to be

the limit in probability of
n∑
k=1

(Xtk −Xtk−1
)2

where the limit is taken over all partitions of the interval [0, t] such that the mesh of the partition

goes to zero. It is well known that [W ]t = t for a standard Brownian motion W , and it is easy to

derive that if Bt is a Brownian motion with variance σ2, then [B]t = σ2t. The covariation [X,Y ]t

of two processes X and Y is defined to be the limit in probability of

n∑
k=1

(Xtk −Xtk−1
)(Ytk − Ytk−1

)

where the limit is taken over all partitions of the interval [0, t] such that the mesh of the partition

goes to zero.

Now if f is a twice continuously differentiable function and M is a square integrable martingale

process,

df(Mt) = f ′(Mt)dMt +
1

2
f ′′(Mt)d[M ]t.

If (M) and (N) are two square integrable martingale process with respect to some filtration
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(Ft), then the integration by parts formula for Ito integral is given by∫ s

0
N(t)dM(t) = N(t)M(t)−N(0)M(0)−

∫ s

0
M(t)dN(t)− [N,M ]t.

This formula can be generalized to the case in which the two processes are semi-martingale. In

particular, if X = R +M and Y = S +N where M and N are defined as above and R and S are

Ft-adapted continuous processes of bounded variation, then∫ s

0
Y (t)dX(t) = Y (t)X(t)− Y (0)X(0)−

∫ s

0
X(t)dY (t)− [N,M ]t.

For a full treatment of stochastic integration, see, e.g., Karatzas and Shreve (2000, Chapter 3).

We now introduce a result from Chan and Wei (1988), whose proof we shall follow next.

Theorem 10.2. Let {Xn} and {Yn} be two sequences of random variables such that {(Xt, Yt)}
is a martingale difference sequence with respect to a filtration {Ft} with E(X2

t |Ft−1) < c and

E(Y 2
t |Ft−1) < c for some c > 0. Suppose 1√

T

[Tr]∑
t=1

Xt,
1√
T

[Tr]∑
t=1

Yt

→d (H,W )

where H and W are two Brownian motions with respect to a filtration (Gt). Let Zt =
∑t

k=1Xt.

Then

1

T

T∑
t=2

Zt−1Yt →d

∫ 1

0
H(r)dW (r).

Proof. For notation convenience, write H̃T (r) = 1√
T

∑[Tr]
t=1 Xt and W̃T (r) = 1√

T

∑[Tr]
t=1 Yt. Since

(H̃T , W̃T ) →d (H,W ), by the Skorokhod representation theorem, there exist a probability space

(Ω′,F ′,P′) and random elements HT ,WT with values in D[0, 1] such that (HT ,WT ) =d (H̃T , W̃T )

and (HT ,WT ) converges in the Skorokhod topology to (H,W ) almost surely. Since H and W have

sample paths in C[0, 1], convergence in the Skorokhod topology implies uniform convergence, i.e.,

sup
r
‖(HT (r),WT (r))− (H(r),W (r))‖ → 0 a.s..

See Billingsley (1999, Section 12). Let

GT =
T∑
t=1

HT

(
t− 1

T

)(
WT

(
t

T

)
−WT

(
t− 1

T

))
.

Then GT =d
1
T

∑T
t=2 Zt−1Yt (note that H̃T (0), therefore HT (0), are zero for all T ). We need to

show that GT →d

∫ 1
0 HdW .
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Fix ε > 0. By Egorov’s theorem, there exists A ∈ F ′ such that P′(Ac) < ε such that

sup
ω∈A

sup
r
‖(HT (r, ω),WT (r, ω))− (H(r, ω),W (r, ω))‖ = δT → 0

where {δT } is a sequence of non-random numbers. For each T , we may choose an integer kT such

that kT →∞, kT δ2
T → 0 and kT /T → 0 as T →∞. Then for each T we may choose a sequence of

integers {nT1, nT2, . . . , nTkT } in {1, . . . , T}, which in turn defines a partition {tT0, tT1, . . . , tTkT } of

[0, 1], such that tT i = nT i/T , 0 = tT0 < tT1 < · · · < tTkT = 1 and that maxi |tT,i+1 − tT i| → 0 as

T →∞.

Let

JT = GT −
kT∑
k=1

HT (tk−1)(WT (tk)−WT (tk−1))

=

kT∑
k=1

nTk−1∑
i=nT,k−1

(
HT

(
i

T

)
−HT (tk−1)

)(
WT

(
i+ 1

T

)
−WT

(
i

T

))

Properties of martingale difference sequences implies that

EJ2
T =

kT∑
k=1

nTk−1∑
i=nT,k−1

E
(
HT

(
i

T

)
−HT (tk−1)

)2(
WT

(
i+ 1

T

)
−WT

(
i

T

))2

≤
kT∑
k=1

nTk−1∑
i=nT,k−1

c2

(
i

T
−
nT,k−1

T

)
1

T

≤ c2
kT∑
k=1

(tk − tk−1)2 = o(1).

Therefore,

GT =

kT∑
k=1

HT (tk−1)(WT (tk)−WT (tk−1)) + op(1).

By Cauchy-Schwartz inequality,

E

(
IA

kT∑
k=1

(HT (tk−1)−H(tk=1))(WT (tk)−WT (tk−1))

)2

≤E

(
kT∑
k=1

(HT (tk−1)−H(tk−1))2IA

)(
kT∑
k=1

(WT (tk)−WT (tk−1))2

)

≤kT δ2
T

kT∑
k=1

E(WT (tk)−WT (tk−1))2

≤kT δ2
T c→ 0.
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Therefore,

IAGT = IA

kT∑
k=1

H(tk−1)(WT (tk)−WT (tk−1)) + op(1).

With summation/integration by parts and a similar argument as above, we have

IA

kT∑
k=1

H(tk−1)(WT (tk)−WT (tk−1))

=− IA
kT∑
k=1

WT (tk)(H(tk)−H(tk−1)) +H(1)WT (1)

=− IA
kT∑
k=1

W (tk)(H(tk)−H(tk−1)) +H(1)W (1) + op(1)

=IA

kT∑
k=1

H(tk−1)(W (tk)−W (tk−1)) + op(1)

=IA

∫ 1

0
H(r)dW (r) + op(1).

The last equality follows from the definition of Ito integral. Since ε is arbitrary, we have that

GT →d

∫ 1
0 HdW . This completes the proof. �

We make a few remarks here.

(a) We make replace the martingale difference sequence assumption on Xt by the assumption

that {Xt} is an Ft-adapted mean-zero weakly stationary time series with absolute convergent

autocovariances without essentially affecting the proof. (The only difference is that in some

places of the proof c may need to be replaced by c
∑∞

k=−∞ |γ(k)| where γ(·) is the autocovari-

ance function of Xt.) Phillips (1988b) provides similar results of convergence to stochastic

integral for innovations that satisfying some strong mixing conditions.

(b) This proof can be directly generalized to the multidimensional case. In particular, if H and

W are two vector Brownian motions whose components are denoted respectively by H i and

W i, then the
∫ 1

0 HdW ′ is defined to be the random matrix whose (i, j)-th entry is
∫ 1

0 H
idW j .

10.3 Some Important Asymptotic Results

Now we assume that wt is a linear process defined as in Section 10.1. Let zt =
∑t

i=1wi. The

process {zt} is said to be an integrated process. Such a process contains a stochastic trend, which

should be obvious if one plots the process.

Besides stochastic trends, we also need to deal with deterministic trends. Let {ct} be a sequence

of deterministic vectors whose i-th component is denoted by {cit}. Suppose there exists δi ≥ 0 and

fi ∈ L2[0, 1] of bounded variation such that fT i ∈ D[0, 1] defined by

fT i(r) =
ci[Tr]

T δi
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satisfies

fTi →L2 fi.

We assume that the fi’s are linearly independent, and write f = (f1, . . . , f`).

Now we introduce some important asymptotics.

Theorem 10.3. Let wt, zt, ct, B be defined as above. Then

1

T δi+3/2

T∑
t=1

citzt →d

∫ 1

0
fi(r)B(r)dr,

1

T 2

T∑
t=1

ztz
′
t →d

∫ 1

0
B(r)B(r)′dr,

1

T δi+1/2

T∑
t=1

citw
′
t →d

∫ 1

0
fi(r)dB(r)′,

1

T

T∑
t=1

zt−1w
′
t →d

∫ 1

0
B(r)dB(r)′ + Λ′

and

1

T

T∑
t=1

ztw
′
t →d

∫ 1

0
B(r)dB(r)′ + Λ◦′

where Λ =
∑∞

k=1 Γ(k) and Λ◦ =
∑∞

k=0 Γ(k).

Proof. Write BT (r) = 1√
T

∑Tr
t=1wt. Note that BT →d B. We have

1

T δi+3/2

T∑
t=1

citzt =
1

T

T∑
t=1

cit
T δi

zt√
T

=

T∑
t=1

∫ t/T

(t−1)/T
fT i(r)BT (r)dr

=

∫ 1

0
fT i(r)BT (r)dr

→d

∫ 1

0
fi(r)B(r)dr.

Since the mapping (g1, g2) 7→
∫ 1

0 g1(r)g2(r)dr is continuous, the last step follows from the continuous

mapping theorem. The integration is in the Lebesgue sense.

Similarly, we have

1

T 2

T∑
t=1

ztz
′
t =

1

T

T∑
t=1

zt√
T

z′t√
T
→d

∫ 1

0
B(r)B(r)′dr.
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Use summation and integration by parts, we have

1

T δi+1/2

T∑
t=1

citw
′
t =

1

T δi+1/2

T∑
t=1

cit(zt − zt−1)

=
ciTwT
T δi+1/2

−
T∑
t=1

cit − ci,t−1

T δi
zt√
T

= fT i(1)BT (1)′ −
∫ 1

0
dfT i(r)BT (r)′ + op(1)

→d fi(1)B(1)′ −
∫ 1

0
dfi(r)B(r)

=

∫ 1

0
fi(r)dB(r)′.

Note that the third equality is due to the definition of Stieltjes integrals and that fT i and fi are of

bounded variation. The convergence in distribution is due to the continuous mapping theorem, and

the last equality is due to integration by parts of Ito integral and the fact that the cross variation

of a continuous martingale with a process (function) of bounded variation is zero.

Write wt = Φ(1)εt− (et− et−1) = w̃t− (et− et−1). Then w̃t is a martingale difference sequence

with B̃T (r) = 1√
T

∑[Tr]
t=1 w̃t →d B(r). Using summation by parts, we have

1

T

T∑
t=1

zt−1w
′
t =

1

T

T∑
t=1

zt−1w̃
′
t −

1

T

T∑
t=1

zt−1(et − et−1)′

=
1

T

T∑
t=1

zt−1w̃
′
t −

1

T
zT e
′
T +

1

T

T∑
t=1

wte
′
t.

The first term converges in distribution to
∫ 1

0 B(r)dB(r)′ by Theorem 10.2. The second term

converge in probability to zero since zT = Op(
√
T ) and eT = Op(1). The third term converges in

probability to Ewte′t while

Ewte′t = E

( ∞∑
i=0

Φiεt−i

) ∞∑
i=0

∞∑
j=i+1

Φjεt−i

′

=

∞∑
i=0

∞∑
j=i+1

ΦiΣΦ′j

=
∞∑
k=1

∞∑
i=0

ΦiΣΦ′i+k

=
∑
k=1

Γ(k)′.

This completes the proof that 1
T

∑T
t=1 zt−1w

′
t →d

∫ 1
0 B(r)dB(r)′+Λ′. And this implies immediately
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that 1
T

∑T
t=1 ztw

′
t →d

∫ 1
0 B(r)dB(r)′ + Λ◦′ by noting that 1

T

∑T
t=1wtw

′
t →p Γ(0). �

The martingale approximation idea in the above proof is due to Phillips (1988a). Also, note

that E 1
T

∑T
t=1 zt−1w

′
t →p Λ′ and E 1

T

∑T
t=1 ztw

′
t →p Λ◦′. So Λ′ and Λ◦′ may be viewed as the bias

terms (the stochastic integrals in this theorem are mean zero). For reference for the later part of

this chapter, let {w1t}, {w2t} be two linear processes such that (w′1t, w
′
2t)
′ satisfies an invariance

principle, whose limit is the Brownian motion (B′1, B
′
2) with long run variance Ξ =

∑∞
k=−∞ Γ(k).

Let z1t =
∑t

s=1w1t and z2t =
∑t

s=1w2t. Let Λ =
∑∞

k=1 Γ(k) and Λ◦ =
∑∞

k=0 Γ(k) and partition

them respectively as [
Λ11 Λ12

Λ21 Λ22

]
and

[
Λ◦11 Λ◦12

Λ◦21 Λ◦22

]
to match the dimension of w1t and w2t. Then we have

1

T

T∑
t=1

z2,t−1w
′
1t →d

∫ 1

0
B2(r)dB1(r) + Λ21

and

1

T

T∑
t=1

z2tw
′
1t →d

∫ 1

0
B2(r)dB1(r) + Λ◦21.

10.4 Unit Roots

We call a time series {Xt} integrated of order k, and write {Xt} ∼ I(k), if the k-th differencing is

needed to make {Xt} stationary. That is, {∆kXt} is stationary, or, {∆kXt} ∼ I(0).

The I(1)-ness of a univariate time series {yt} may be tested through the regression

yt = αyt−1 + ut

where ut is stationary. Under the null, α = 1, and the above equation becomes an autoregression

with a unit root. Therefore, an I(1) process is often called a unit root process. The tests for

I(1)-ness would therefore be referred to as the unit root tests.

Now we consider the OLS estimate of α given by

α̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

.

Note that this is also the maximum likelihood estimator under the assumption of normality. Suppose

that {ut} satisfies the invariance principle with 1√
T

∑[Tr]
t=1 wt →d B(r). Then it is easy to see that

T (α̂− 1) =
1
T

∑T
t=1 yt−1ut

1
T 2

∑T
t=1 y

2
t−1

→d

∫ 1
0 B(r)dB(r) + λ∫ 1

0 B(r)2dr
,

where λ =
∑∞

k=1 γ(k), γ(·) is the autocovariance function of {ut}. Also, let ût be the residual of
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the OLS regression, and estimate the error variance by σ̂2 = 1
T

∑T
t=1 û

2
t , we have

σ̂2 =
1

T

T∑
t=1

u2
t −

1

T

(
1
T

∑T
t=1 yt−1ut

)2

1
T 2

∑T
t=1 y

2
t−1

=
1

T

T∑
t=1

u2
t +Op(1/T )→p σ

2

where σ2 = Eu2
t . Then we may define the t statistic (the likelihood ratio test statistics) of α and

have

t(α) =
α̂− 1

σ̂
(∑T

t=1 y
2
t−1

)−1/2
=

1
T

∑T
1 yt−1ut

σ̂
(

1
T 2

∑T
t=1 y

2
t−1

)1/2
→d

∫ 1
0 B(r)dB(r) + λ

σ
(∫ 1

0 B(r)2dr
)1/2

.

10.5 The Dickey-Fuller Test

If ut ∼WN(0, σ2), then λ = 0, and B = σW where W is the standard Brownian motion. Then we

have

T (α̂− 1)→d

∫ 1
0 W (r)dW (r)∫ 1

0 W (r)2dr

and

t(α)→d

∫ 1
0 W (r)dW (r)(∫ 1
0 W (r)2dr

)1/2
.

Note that the limit distribution the above two statistics are free of nuisance parameters and may

be obtained by simulation. They are usually referred to as the Dickey-Fuller distributions (Dickey

and Fuller, 1979) and the test for unit root based on the t(α) statistic of the AR(1) model is called

the Dickey-Fuller test. For more details including exact distribution as well as power of tests based

directly on the OLS estimator of α under the assumption of normality, see Evans and Savin (1981)

and Evans and Savin (1984).

10.6 The Augmented Dickey-Fuller Test

We may allow ut to be an AR(p) process. That is, α(L)ut = εt where εt ∼ WN(0, σ2) and

α(z) = 1 − α1z − · · · − αP zp. In this case, we may test the null hypothesis α = 1 based on the

regression

yt = αyt−1 +

p∑
k=1

αk∆yt−k + εt.

The t statistic for α is given by

t(α) =
α̂− 1

σ̂
(∑T

t=1 y
2
t−1

)−1/2
=

T (α̂− 1)

σ̂
(

1
T 2

∑T
t=1 y

2
t−1

)−1/2
.
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To obtain α̂, write vt = (∆yt−1, . . . ,∆yt−p)
′ and γ = (α1, . . . , αp)

′. Note that vt is I(0). Then our

regression model may be written as yt = αyt−1 + v′tγ + εt. By two-step regression

T (α̂− 1) =T

 T∑
t=1

y2
t−1 −

T∑
t=1

yt−1v
′
t

(
T∑
t=1

vtv
′
t

)−1 T∑
t=1

vtyt−1

−1

•

 T∑
t=1

yt−1εt −
T∑
t=1

yt−1v
′
t

(
T∑
t=1

vtv
′
t

)−1 T∑
t=1

vtεt


=

 1

T 2

T∑
t=1

y2
t−1 −

1

T

(
1

T

T∑
t=1

yt−1v
′
t

)(
1

T

T∑
t=1

vtv
′
t

)−1(
1

T

T∑
t=1

vtyt−1

)−1

•

 1

T

T∑
t=1

yt−1εt −

(
1

T

T∑
t=1

yt−1v
′
t

)(
1

T

T∑
t=1

vtv
′
t

)−1(
1

T

T∑
t=1

vtεt

)
=

[
1

T 2

T∑
t=1

y2
t−1 +Op

(
1

T

)]−1 [
1

T

T∑
t=1

yt−1εt + op(1)

]

=

(
1

T 2

T∑
t=1

y2
t−1

)−1(
1

T

T∑
t=1

yt−1εt

)
+ op(1).

Note that if 1√
T

∑[Tr]
t=1 εt →d B(r), then 1√

T

∑[Tr]
t=1 ut →d

B(r)
α(1) . Then

T (α̂− 1)→d

∫ 1
0
B(r)
α(1) dB(r)∫ 1

0

(
B(r)
α(1)

)2
dr

=
α(1)

∫ 1
0 W (r)dW (r)∫ 1

0 W (r)2dr

and

t(α)→d

∫ 1
0
B(r)
α(1) dB(r)

σ

(∫ 1
0

(
B(r)
α(1)

)2
dr

)1/2
=

∫ 1
0 W (r)dW (r)(∫ 1
0 W (r)2dr

)1/2
.

We may conduct our test based on T (α̂−1)
α̂(1) or t(α) where α̂(1) is the OLS estimate for α(1). This

t test procedure above is called the augmented Dickey-Fuller test after Dickey and Fuller (1981).

Said and Dickey (1984) study the case when ut is an MA process with unknown order, and the

augmented Dickey-Fuller test procedures can still be used. See also Solo (1984).

When ut is in general serially correlated (not necessarily follows an AR process), the Phillips-

Perron unit root test directly corrects the bias term by nonparametric methods. Interested readers

are invited to refer to Phillips (1987b), Phillips and Perron (1988) and Hamilton (1994, Section

17.6).

One may also conduct unit root tests based on the residuals. See, for example, Sargan and

Bhargava (1983) and Bhargava (1986).
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10.7 Testing for a Unit Root with Maintained Time Trends

Now we suppose that the time series {yt} is generated as

yt = π′ct + y◦t

where {ct} is a vector of deterministic sequence and y◦t is the stochastic component of the process

{yt}. To test for the presence of a unit root in the stochastic component of {yt}, we utilize the

regression

yt = π′ct + αyt−1 + ut (10.1)

When ct = (1, t)′ and |α| < 1, the process is said to be trend stationary. When ct = 1 and α = 1,

the process is said to be difference stationary.

We may also conduct the test based on

y◦t = αy◦t−1 + ut. (10.2)

Of course, the unobserved y◦t needs to be replaced with the OLS residual ŷ◦t from regressing yt on

ct. That is,

ŷ◦t = yt −

(
T∑
t=1

ytc
′
t

)(
T∑
t=1

ctc
′
t

)−1

ct

= y◦t −

(
T∑
t=1

y◦t c
′
t

)(
T∑
t=1

ctc
′
t

)−1

ct

Then it is obvious that the OLS estimator of α in (10.1) is equivalent to the OLS estimator of the

regression (10.2) using the residuals.

On the other hand, let δi be the smallest number such that ci[Tr]/T
δ converges to fi in L2[0, 1].

Let DT = diag(T δ1 , . . . , T δm) and c∗t = D−1
T ct. Then c[Tr] →L2 f(r) = (f1(r), . . . , fm(r)).

Then

T (α̂− 1) =
T
∑T

t=1 y
◦
t−1ut∑T

t=1(y◦t−1)2

= T

∑T
t=1 y

◦
t−1ut −

(∑T
t=1 y

◦
t−1c

′
t

)(∑T
t=1 ctc

′
t

)−1∑T
t=1 ctut∑T

t=1

(
y◦t−1 −

(∑T
t=1 y

◦
t−1c

′
t

)(∑T
t=1 ctc

′
t

)−1
ct

)2

=

1
T

∑T
t=1 y

◦
t−1ut −

(∑T
t=1

yt−1√
T

◦
c∗t
′
)(∑T

t=1 c
∗
t c
∗
t
′
)−1∑T

t=1 c
∗
t
ut√
T

1
T

∑T
t=1

(
y◦t−1√
T
−
(∑T

t=1

y◦t−1√
T
c∗t
′
)(∑T

t=1 c
∗
t c
∗
t
′
)−1

c∗t

)2

→d

∫ 1
0 B̃(r)dB̃(r) + λ∫ 1

0 B̃(r)2dr
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where

B̃(r) = B(r)−
∫ 1

0
B(r)f(r)′dr

(∫ 1

0
f(r)f(r)′dr

)
f(r)

is the residual of the Hilbert space projection of B on f , and λ =
∑∞

k=1 E(utut−k).

The unit root test may be based on the above asymptotic result. There are nuissance parameters

in the above result, which we need to estimate.

10.8 Unit Root Test in the Multivariate Case

This part is mainly based on Phillips and Durlauf (1986). Suppose that the multivariate time series

{yt} where yt is given by

yt = yt−1 + ut,

an invariance principle holds for {ut}:

1√
T

[Tr]∑
t=1

ut →d B(r),

where B is a Brownian motion with variance Xi, which is the long-run variance of the process {ut}.
Now consider the regression

yt = Ayt−1 + ut

and estimate A by the usual OLS estimator for VAR(1) given as

Â =

(
1

T

T∑
t=1

yty
′
t−1

)(
1

T

T∑
t=1

yt−1y
′
t−1

)−1

.

It is straightforward to show that

T (Â− I)→d

(∫ 1

0
dB(r)B(r)′ + Λ

)(∫ 1

0
B(r)B(r)′dr

)−1

where Λ =
∑∞

k=1 Γ(k) with Γ(·) being the autocovariance function of {ut}.
We may also consider a symmetrized version of the estimator given by

Ã =

(
1

2T

T∑
t=1

(yty
′
t−1 + yt−1y

′
t)

)(
1

T

T∑
t=1

yt−1y
′
t−1

)−1

.

Using summation/integration by parts techniques as in the proof of Theorem 10.3, we may show

that

T (Ã− I)→d
1

2

(
B(1)B(1)′ − Σ

)(∫ 1

0
B(r)B(r)′dr

)−1

where Σ = Eutu′t.
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The usual Wald test statistics for the null hypothesis is given by

W = T tr

[
(Ã− I)′Σ̂−1(Ã− I)

(
1

T

T∑
t=1

yty
′
t

)]

→d
1

4
tr

[
(B(1)B(1)′ − Σ)Σ−1(B(1)B(1)′ − Σ)

(∫ 1

0
B(r)B(r)′dr

)−1
]
,

where Σ̂ = 1
T

∑T
t=1 ∆yt∆y

′
t is a consistent estimator of Σ under the null. Note that the limit

distribution of the Wald test statistic has nuissance parameters. Only in the case when {ut} is a

white noise, the limit distribution can be reduced to one without nuissance parameter:

1

4
tr

[
(W (1)W (1)′ − I)2

(∫ 1

0
W (r)W (r)′dr

)−1
]

where W is the standard vector Brownian motion.

To accommodate the case of general {ut}, we consider an consistent positive semi-definite

estimator Ξ̂ of Ξ. For a construction of such an estimator, see Phillips and Durlauf (1986). Then

it is easy to see that the modified Wald test statistic

Ws = W − 1

4
tr

( 1

T 2
yT y

′
T (Σ̂−1 − Ξ̂−1)yT y

′
T + (Σ̂− Ξ̂)

)(
1

T 2

T∑
t=1

yty
′
t

)−1


→d
1

4
tr

[
(W (1)W (1)′ − I)2

(∫ 1

0
W (r)W (r)′dr

)−1
]
.

Alternatively, we may use

G = tr

T (Ã− I)− 1

2

(
1

T
yT y

′
T − Σ̂

)(
1

T 2

T∑
t=1

yt−1y
′
t−1

)−1
′

T (Ã− I)− 1

2

(
1

T
yT y

′
T − Σ̂

)(
1

T 2

T∑
t=1

yt−1y
′
t−1

)−1
+

1

T
y′T Ξ̂−1yT

→dχ
2
m

where m is the dimension of yt. Note that under the null, the first part of G converges in probability

to zero while the second part of G converges in distribution of tr(N(0, I)2).

10.9 General Unstable Autoregressive Process

Chan and Wei (1988) study the limit distribution of the OLS estimator of a general AR process
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with roots on the unit circle. To be specific, they consider the process

φ(L)yt = εt

where {εt} is a martingale difference sequence satisfying some moment conditions and φ(z) can be

factorized as

φ(z) = (1− z)a(1 + z)b
l∏

k=1

(1− 2 cos θkz + z2)dkψ(z)

where ψ(z) is a polynomial with roots outside the unit circle. It has been shown that the different

components of the process that correspond to the 1 root, the −1 root, the e±iθ roots, and the

stationary roots, respectively, if properly normalized, converge in distribution to functionals of

Brownian motions. Also, these different components are asymptotically independent from each

other.

10.10 Fractionally Integrated Series

An integrated series {yt} may be written in the form of

(1− L)dyt = Φ(L)εt

where {εt} is a white noise process and Φ(L) is a lag operator polynomial with absolutely summable

coefficients, and d is an integer which represents the order of integration. Granger and Joyeux (1980)

and Hosking (1981) suggest to generalize the above model to non-integral value of −1 < d < 1, d 6= 0

by defining yt through

yt = (1− L)−dΦ(L)εt (10.3)

where (1 − L)−d is defined through the Taylor expansion of the polynomial (1 − z)−d at around

z = 0 given by

(1− z)−d = 1 + dz +
d(d+ 1)

2
z2 +

d(d+ 1)(d+ 2)

6
z3 + · · ·

= 1 +

∞∑
j=1

Γ(d+ j)

Γ(d)Γ(j + 1)
zj ,

and Γ(·) is the gamma function. Note that we have used the relationships that j! = Γ(j + 1) and

that d(d+ 1) · · · (d+ j − 1) = Γ(d+j)
Γ(d) , given that d and d+ j are not negative integers. The latter

term is called a rising factorial.

Write (1− z)−d =
∑∞

j=0 hjz
j . Using Stirling’s approximation formula for the gamma function,

which states that Γ(z) =
√

2π
z

(
z
e

)z (
1 +O(1

z )
)
, we can show that hj ∼ (j + 1)d−1 for j large, or

limj→∞
hj

(j+1)d−1 = C for some constant C.

This above asymptotic approximation shows that if d < 1
2 ,
∑∞

j=0 h
2
j < ∞. Therefore, (10.3)

defines a weakly stationary series. Note that such a series is also causal if Φ(·) is causal. In the
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case of d ≥ 1
2 ,
∑∞

j=0 h
2
j diverges and the right hand side of (10.3) has infinite variance. Therefore,

it cannot represent a weakly stationary time series.

When −1
2 < d < 0, (1−L)d =

∑∞
j=0 h

′
jL

j has square summable coefficients. Therefore, if (10.3)

represents a weakly stationary time series {yt} with −1
2 < d < 0, then {yt} is invertible if Φ(·) is

invertible.

Now let yt = (1 − L)−dxt for −1
2 < d < 1

2 and {xt} be a weakly stationary time series with

spectral density fx. Then we have

fy(λ) =
∣∣∣1− eiλ∣∣∣−2d

fx(λ).

Taylor expansion shows that
∣∣1− eiλ∣∣−2d ∼ Cλ−2d as λ → 0 for some constant C. If d ∈ (0, 1

2)

and ut is a white noise, then the spectral density of yt at λ = 0 is infinity. This corresponds to a

stationary process that has a large low frequency component, or has a “long memory”. If d ∈ (−1
2 , 0)

and ut is a white noise, then the spectral density of yt at λ = 0 is zero and has derivative ∞. This

corresponds to a stationary process that has almost no low frequency component, or has a “short

memory”, or “anti-persistent” in the terminology of Mandelbrot (1977).In contrast, a stationary

ARMA process has spectral density converging to a constant C as the frequency λ converges to 0,

where C is related to its long-run variance.

The fractionally integrated model can therefore be used to describe processes that has long

memory or short memory. Note that the impulse response coefficients decay asymptotically at

the hyperbolic speed (j + 1)d−1, as opposed to the ARMA case in which the decaying rate of the

impulse response is geometric asymptotically. In general, if (1 − L)dyt is an ARMA(p, q) process,

then we call yt an ARIMA(p, d, q) process in the terminology of Hosking (1981), or more explicitly,

an ARFIMA(p, d, q) process.

In practice, the covariance structure of a fractionally integrated process can be well approx-

imated by a large order ARMA process. However, fractionally integrated model can serve as a

parsimonious model for series that has slow decaying multipliers.

In the case of d > 1
2 or d < −1

2 , we may difference or sum the original series so that the resulting

series fits a fractionally integrated model of order between −1
2 and 1

2 .

Granger (1980) shows that long memory processes can arise from aggregating many individual

AR(1) series whose AR coefficients follow a Beta distribution.

10.11 Explosive Roots

White (1958) consider the asymptotic distribution of the estimator α̂ under the explosive root

assumption that |α| > 1. Using moment generating function technique, the author shows that the

limit distribution of
|α|T

α2 − 1
(α̂− α)

is the standard Cauchy distribution. White (1959) shows that the corresponding distribution of
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the t-statistic, as opposed to the unit root case, is asymptotically normal. Anderson (1959) and

Rao (1961) consider the case of higher order autoregressive processes with explosive roots.
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11 Cointegration

11.1 Cointegration

Consider the regression

yt = x′tβ + ut

in which xt and yt are I(1), but ut is I(0). In this case, we say that yt and xt are cointegrated, and

the cointegration relationship is given by (−1, β′)′. The concept of cointegration was introduced in

Granger (1981) and Engle and Granger (1987).

Suppose that wt = (ut,∆x
′
t)
′ satisfies an invariance principle to a vector Brownian motion

(B1, B
′
2)′ where B1 is one dimensional, and the dimension of B2 is the same as that of xt. Let β̂

be the OLS estimator of β. We may easily derive that

T (β̂ − β)→d

(∫ 1

0
B2(r)B2(r)dr

)−1(∫ 1

0
B2(r)dB1(r) + Λ◦21

)
(11.1)

where
∑∞

k=0 ∆xtut−k.

We note here that the above result shows that β̂ →p β even in the case where Λ◦21 6= 0, i.e., in

the case where xt and ut are correlated. This is very different to the regression in the stationary

setting in which endogeneity will lead to inconsistent OLS estimate for the regression coefficient.

See Phillips and Hansen (1990) for more discussion.

Phillips and Park (1988) show that in the case when {ut} and {∆xt} are independent and

ut follows an AR process, the OLS estimator β̂ is efficient in the sense that it is asymptotically

equivalent to the GLS estimator.

Now we consider cointegration regression with additional regressors:

yt = z′tγ + x′tβ + ut.

In the case when zt is I(0), using two step regression and similar arguments as in Section 10.6, it

is easy to show that the OLS estimator of β converges in distribution to the same distribution as

if there were not the additional I(0) term. If zt = ct, a deterministic sequence as in Section 10.7,

then a similar argument show that the OLS estimator β̃ for β has asymptotics given by

T (β̂ − β)→d

(∫ 1

0
B̃2(r)B̃2(r)dr

)−1(∫ 1

0
B̃2(r)dB1(r) + Λ◦21

)
where

B̃(r) = B(r)−
∫ 1

0
B(r)f(r)′dr

(∫ 1

0
f(r)f(r)′dr

)
f(r).

For a detailed discussion of the general cases, see, e.g., Phillips and Durlauf (1986) and Park and

Phillips (1988). Park and Phillips (1989) consider the case in which there are regressors that are

0 c© 2017-2021 by Bo Hu. All rights reserved.
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integrated of higher orders.

11.2 Spurious Regression

Let yt and xt be I(1), and let wt = (∆yt,∆x
′
t)
′ satisfy an invariance principle. Suppose that yt is

not integrated with xt, i.e., for any choice of β, et = yt − x′tβ is I(1). If we run an OLS regression

on

yt = x′tβ + et

and obtain the OLS estimator β̂ of β, we have

β̂ =

(
1

T 2

T∑
t=1

xtx
′
t

)−1(
1

T 2

T∑
t=1

xtyt

)
→d

(∫ 1

0
B2(r)B2(r)′dr

)−1(∫ 1

0
B2(r)B1(r)dr

)
.

Since β̂ converges to something random, β̂ cannot be consistent.

Note that in the spurious regression setting,

1

T
σ̂2 =

1

T 2

T∑
t=1

(yt − x′tβ̂)2

=
1

T 2

T∑
t=1

y2
t −

1

T 2

T∑
t=1

β̂′xtx
′
tβ̂

→d

∫ 1

0
B1(r)2dr −

(∫ 1

0
B1(r)B2(r)′dr

)(∫ 1

0
B2(r)B2(r)′dr

)−1(∫ 1

0
B2(r)B1(r)dr

)
=

∫ 1

0
B̃1(r)2dr

where

B̃1(r) = B1(r)−B2(r)′
(∫ 1

0
B2(r)B2(r)′dr

)−1(∫ 1

0
B2(r)B1(r)dr

)
.

Then for the t-statistic under the null hypothesis βi = 0, we have

1√
T
t(βi) =

β̂
√
T σ̂

[(∑T
t=1 xtx

′
t

)−1/2
]
ii

→d

(∫ 1
0 B2(r)B2(r)′dr

)−1 (∫ 1
0 B2(r)B1(r)dr

)
(∫ 1

0 B̃1(r)2dr
)1/2

[(∫ 1
0 B2(r)B2(r)′dr

)−1/2
]
ii

.

This shows that the t-statistic t(βi) diverges to infinity as T goes to infinity. That is, we will always

reject the null that βi = 0 when the sample size is large enough.
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Similarly, we may want to use the F -test to test for the joint significance of β. However,

1

T
F (β) =

∑T
t=1 ytx

′
t

(∑T
t=1 xtx

′
t

)−1∑T
t=1 xtyt/m∑T

t=1 y
2
t −

∑T
t=1 ytx

′
t

(∑T
t=1 xtx

′
t

)−1∑T
t=1 xtyt

→d

∫ 1
0 B1(r)B2(r)′dr

(∫ 1
0 B2(r)B2(r)′dr

)−1 ∫ 1
0 B2(r)B1(r)′dr/m∫ 1

0 B1(r)2dr −
∫ 1

0 B1(r)B2(r)′dr
(∫ 1

0 B2(r)B2(r)′dr
)−1 ∫ 1

0 B2(r)B1(r)′dr
.

This shows that F (β) diverges to infinity as T goes to infinity. That is, we will always reject the

null that β = 0 when the sample size is large enough, even though yt and xt are not connected in

any meaningful way.

Also,

R2 =

∑T
t=1 ytx

′
t

(∑T
t=1 xtx

′
t

)−1∑T
t=1 xtyt∑T

t=1 y
2
t

=

∫ 1
0 B1(r)B2(r)′dr

(∫ 1
0 B2(r)B2(r)′dr

)−1 ∫ 1
0 B2(r)B1(r)′dr∫ 1

0 B1(r)2dr
,

which remains random as T →∞. Usually its value is very close to one.

Lastly, consider the Durbin-Watson statistic

DW =

∑T
t=1(êt − êt−1)2∑T

t=1 ê
2
t

where

êt = yt −

(
T∑
t=1

ytx
′
t

)(
T∑
t=1

xtx
′
t

)−1

xt

and

êt − êt−1 = ∆yt −

(
T∑
t=1

ytx
′
t

)(
T∑
t=1

xtx
′
t

)−1

∆xt.

It can be easily seen that 1
T 2

∑T
t=1 ê

2
t = Op(1), while 1

T

∑T
t=1(∆êt)

2 = Op(1). Note that

1

T

T∑
t=1

(
[1,−β̂′]wt

)2
→d η

′Σwη

where

η =

 1

−
(∫ 1

0 B2(r)B2(r)′dr
)−1 (∫ 1

0 B2(r)B1(r)dr
)
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and Σw = Ewtw′t. Then

T ·DW →d
η′Σwη∫ 1

0 B̃1(r)2dr
.

This shows that as sample size gets large, the Durbin-Watson statistic gets close to zero, indicating

that there is strong positive first-order serial correlation in the residuals, which is something well

expected in the spurious regression setting.

The following is quoted from Granger and Newbold (1974), the paper that introduced the

concept of spurious regressions.

It is very common to see reported in applied econometric literature time series re-

gression equations with an apparently high degree of fit, as measured by the coefficient

of multiple correlation R2 or the corrected coefficient R̄2, but with an extremely low

value for the Durbin-Watson statistic. We find it very curious that whereas virtually

every textbook on econometric methodology contains explicit warnings of the dangers of

autocorrelated errors, this phenomenon crops up so frequently in well-respected applied

work.

...

There are, in fact, as is well-known, three major consequences of autocorrelated

errors in regression analysis:

(i) Estimates of the regression coefficients are inefficient.

(ii) Forecasts based on the regression equations are sub-optimal.

(iii) The usual significance tests on the coefficients are invalid.

In such situations, Granger and Newbold (1974) propose to difference the time series before

running regressions. See also Plosser and Schwert (1978) for a discussion of possible effects of

underdifferencing and over-differencing. To be specific, if the variables are under-differenced, we

have the spurious regression problem. If the variables in the regression is over-differenced, the

coefficient estimator is still consistent, but inefficient, and the inference based on the usual t-

statistic is problematic. The reason is that when the model is over-differenced, the new error term,

which is the original error term first differenced, is autocorrelated. In this situation, we need to use

HAC standard errors if we would like to conduct inference based on OLS estimator, or use GLS

estimator to achieve efficiency. For the situation of spurious regression when an intercept term

is included in the regression, see Phillips (1986). Also, note that in the case when yt and xt are

cointegrated, the long-run variance matrix of wt is singular, and the asymptotics in this section

does not hold anymore. The asymptotics are given in the previous section.

11.3 Testing for Cointegration

We may test for cointegration between yx and xt by applying the unit root test to the OLS residuals

{êt} of the regression

yt = x′tβ + et.
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If yt and xt are cointegrated, there exists β such that et is I(0). Otherwise, et contains a unit root

for any choice of β. We run the augmented Dickey-Fuller test on êt through the regression

êt = αêt−1 +

p∑
k=1

αk∆êt−k + εt.

Under the null hypothesis that yt and xt are not cointegrated, α = 1

Suppose that (∆yt,∆x
′
t)
′ satisfies an invariance principle such that[

1√
T

∑[Tr]
t=1 ∆yt

1√
T

∑[Tr]
t=1 ∆xt

]
→d

[
B1(r)

B2(r)

]

with the long run covariance matrix [
ω11 ω12

ω21 Ω22

]
where the long run covariance matrix is appropriately partitioned so that ω11 is one-by-one dimen-

sional. It is straightforward to show that

1√
T
ê[Tr] →d B1(r)−

(∫ 1

0
B1(r)B2(r)′dr

)(∫ 1

0
B2(r)B2(r)′dr

)−1

B2(r) := B̃.

Then it is easy to follow Section 10.6 to establish that

t(α) =
T (α̂− 1)

σ̂
(

1
T 2

∑T
t=1 ê

2
t−1

)−1/2
→d

∫ 1
0 W (r)dW (r)(∫ 1
0 W (r)2dr

)1/2

where σ̂2 is a consistent estimator of the variance of εt.

However, it is not straightforward to get/simulate the distribution of B̃ since B1 and B2 are

correlated. Therefore, we write[
B1

B2

]
=

ω1/2
11

√
1− (ω12Ω−1

22 ω21/ω11)2 ω12Ω
−1/2
22

0 Ω
1/2
22

[W11

W22

]

where W1 and W2 are two independent Brownian motions. Then we may show that

B̃(r) = ω
1/2
11

√
1− (ω12Ω−1

22 ω21/ω11)2W̃ (r)

where

W̃ (r) = W1(r)−
(∫ 1

0
W1(r)W2(r)′dr

)(∫ 1

0
W2(r)W2(r)′dr

)−1

W2(r).
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Then

t(α)→d

∫ 1
0 W̃ (r)dW̃ (r)(∫ 1
0 W̃ (r)2dr

)1/2
.

Phillips and Ouliaris (1988) propose another test for cointegration based on the eigenvalues of

the long-run variance estimator of (∆xt,∆yt). The idea is that if xt and yt are cointegrated, then

the long-run variance matrix of its innovations should be singular.

11.4 Inference in Cointegrated Models

The problem with statistical inference in cointegrated models is that the limit distribution in

(11.1) is non-standard, and the distributions of the conventional test statistics contains nuisance

parameters. We introduce in this section two popular approaches that can be used to conduct

inference in cointegrated models.

11.4.1 Phillips and Hansen’s Fully Modified OLS

Phillips and Hansen (1990) modifies the OLS estimator in the cointegration regression. The fully

modified OLS estimator (FM-OLS) is

β̂FM-OLS =

(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xty
+
t − Λ+

)

where

y+
t = yt − ω12Ω−1

22 ∆xt,

and

Λ+ = Λ◦21 − Λ◦22Ω−1
22 ω21,

following the notations introduced in the earlier sections of this chapter.

Theorem 11.1. We have that

T (β̂FM-OLS − β)→d

(∫ 1

0
B2(r)B2(r)′dr

)−1 ∫ 1

0
B2(r)dB1·2(r)

where B1·2 = B1 − ω12Ω−1
22 B2 is independent of B2.

Proof. Note

T (β̂FM-OLS − β) =

(
1

T 2

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xt(ut − ω12Ω−1
22 ∆xt)− Λ+

)

=

(
1

T 2

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xtw
′
t

[
1

−Ω−1
22

]
− Λ+

)
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. The result follows immediately by noting

1

T 2

T∑
t=1

xtx
′
t →d

∫ 1

0
B2(r)B2(r)′dr

and

1

T

T∑
t=1

xtw
′
t →d

[∫ 1
0 B2(r)dB1(r) + Λ◦21∫ 1
0 B2(r)dB2(r) + Λ◦22

]
.

�

11.4.2 Park’s Canonical Cointegrating Regression

Instead of modifying the OLS estimator, Park (1992) transforms the data. Define

y∗t = yt − β′Λ◦2
′Σ−1wt − ω12Ω−1

22 ∆xt

and

x∗t = xt − Λ◦2
′Σ−1wt

where Σ = Eutu′t, Λ◦2 is Λ◦ partitioned as Λ◦ = [Λ◦1 Λ◦2], and the rest notations are as earlier. The

canonical cointegrating regression (CCR) estimator β̂CCR, is defined to be the OLS estimator of

the regressing y∗t on x∗t . The CCR estimator utilizes the fact that the cointegration relationship

between two I(1) variables is unchanged by adding I(0) (i.e., stationary) components to the two

variables. The CCR error term u∗t = y∗t − x∗tβ = ut−ω12Ω−1
22 ∆xt, is asymptotically independent of

{∆xt} or {∆x∗t }.
It can be easily proved (following the proof of asymptotic distribution of the FM-OLS estimator)

that β̂CCR has exactly the same asymptotic distribution as that of β̂FM-OLS.

In feasible FM-OLS and CCR estimator, the omega’s and lambda’s are replaced with their

consistent (and possibly nonparametric) estimators.

11.4.3 The Wald Test

To test for null hypothesis H0 : Rβ = r against the alternative Rβ 6= r, we apply the Wald statistic

W =

(Rβ̂ − r)′
(
R(
(∑T

t=1 xtx
′
t

)−1
)R′
)−1

(Rβ̂ − r)

ω11 − ω12Ω−1
22 ω21

where β̂ is either β̂FM-OLS or β̂CCR.

Theorem 11.2. Under the null, W →d χ
2
q where q is the number of restrictions.

Proof. The result follows from that under the null

T (Rβ̂ − β) = TR(β̂ − β)
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and that(
R

(∫ 1

0
B2(r)B2(r)dr

)−1

R′

)−1/2

R

∫ 1

0
B2(r)dB1·2 =d N(0, ω11 − ω12Ω−1

22 ω21).

Note that if A(r) is a deterministic process, then
∫ 1

0 AdB =d N
(

0,
∫ 1

0 A(r)ΞA′(r)dr
)

if B is a

Brownian motion with covariance Ξ. Since B2 is independent of B1·2, the distribution of the

above term conditioning on B2 is N(0, ω11 − ω12Ω−1
22 ω21). Therefore, this is also the unconditional

distribution. �

11.5 Cointegrated VAR and the Error Correction Models

We consider a vector autoregressive system in which variables contain unit roots and are possibly

cointegrated. To be specific, let {yt} be an r-dimensional VAR(p) process given by

Φ(L)yt = εt

where εt ∼WN(0,Σ) and

Φ(z) = I − Φ1z − · · · − Φpz
p.

Instead of assuming that all roots of det Φ(z) = 0 lie outside the unit circle, we introduce unit

roots in this system, and assume that there are m roots that are one, 0 < m ≤ r, and all the other

roots are outside the unit circle. Since z = 1 is a root of det Φ(z) = 0, Φ(1) is a reduced rank

matrix and we assume that rank Φ(1) = `.

We may write

Φ(z) = −zΦ(1) + (1− z)Γ(z)

where

Γ(z) = I − Φ2z − · · · − Φpz
p−1.

This is the VAR written in the error correction form, which was first studied in Granger and Weiss

(1983) and Engle and Granger (1987).
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