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1 Introduction

The rapid development of economic theories and practices calls for econometric methods
that can be used to analyze complicated objects such as curves and functions in addition to
scalars and vectors. At the same time, developments in data generation, collection, storage
and communication technologies give researchers access to data that have rich structures.
These developments lay the groundwork for the emergence of functional data analysis in
recent years, both in cross-sectional and time series settings. In functional data analysis,
data are studied in the original functional form, while in traditional methods any functional
observation has to be converted to a few statistics intended to summarize the information.
For example, in studying distributional dynamics, one may use functional methods to keep
track of the density function process, while the traditional treatments only look at the
processes of a few moments and/or quantiles. Since the density function contains all the
information about a distribution, functional methods provide opportunities to study full dy-
namics of the underlying time varying distributions, in addition to traditional methods that
focus only on some particular aspects of the distributions. Functional methods therefore
have advantages in studying complicated objects such as global temperature (Chang et al.,
2020), electricity prices (Chen and Li, 2016), bond yield curves (Hays et al., 2012), distri-
bution of financial returns (Hu et al., 2016; Park and Qian, 2012) and earning distribution
dynamics (Chang et al., 2016a).

There is a collection of theories available for functional data analysis. Among many
excellent others, Ramsey and Silverman (2005) give an introduction to the theories and
tools in functional data analysis. Horvath and Kokoszka (2012) provide a comprehensive
summary of the techniques in functional data analysis up to the time of publication. Ferraty
and Vieu (2006) introduce nonparametric methods in functional data analysis. Bosq (2000)
is devoted to the theory of functional time series, particularly functional autoregression in a
stationary setting. All of these theories are developed under the assumption of independent
and identical distributions or stationarity. However, many interesting functional time series
in real-life applications have nonstationary features. For example, over the past 30 years,
US income inequality has been growing markedly. This implies that there is likely to be
nonstationarity in the density process of the US income distributions. It then calls for
a framework that is able to accommodate functional time series with strong persistence.
Chang et al. (2016b) give some results on functional time series with unit roots and provide
a test for the number of unit roots in a functional time series. However, no formal theory has
been developed for functional time series with unit roots under the autoregression setting.

In this paper, we study functional autoregression (FAR) with unit roots in infinite di-



mensional Hilbert spaces. We provide a functional Beveridge-Nelson decomposition that
identifies the permanent and transitory components of the functional time series generated
by the FAR model. These two components represent the persistent stochastic trends and
stationary cyclical movements of the functional time series, respectively. We relate our
decomposition to the error correction model when the underlying function space is finite
dimensional. The attractor space and the cointegrating space are given by our permanent
subspace and stationary subspace, respectively. We propose estimators for the functional
autoregressive operator, both without and with the unit root restriction. Our estimators
are consistent under very mild regularity conditions, and converge at different rates on dif-
ferent subspaces. In the nonstationary subspace, our estimators converge at rate n, and
the limit distribution is nonstandard, given as a function of Brownian motions. Elsewhere,
our estimators converge at the parametric 1/n-rate or at a rate slower than 1/n, depending
on the subspaces in which the convergence is considered, and the limit distributions are
Gaussian. We also provide consistent estimators for the permanent-transitory decomposi-
tion. In addition, our framework can be used to make forecasts. The one-step predictor
based on our FAR estimator is asymptotically normal with a convergence rate slower than
v/n. We also extend our framework to incorporate the situation in which the transitory
component has a non-zero drift, the data are estimated with error, and/or the functional
time series is Markovian of higher order. We give conditions under which the asymptotic
theory continues to hold in these extensions.

We apply our method to study the dynamics of the term structure of the US government
bond yields. We model the time series of the forward rate curves by a functional autore-
gressive model and find that there are two dimensional unit roots in the dynamics. We
decompose the forward rate curve process into its permanent and transitory components.
We identify two permanent structural shocks, namely the permanent spread shock and the
permanent level shock, and one transitory shock in the forward rate curve dynamics. The
three shocks have at-impact effects to the forward rate curve in the forms of level change,
slope change, and curvature change. We relate these three structural shocks to monetary
and fiscal policy shocks, and find that the permanent spread shock and the transitory shock
are related to monetary policy shocks, and the permanent level shock and the transitory
shock are related to fiscal policy shocks. We get the impulse response surfaces of the yield
curve to monetary and policy shocks. We find that the overall long term effect of the mon-
etary policy shocks is significant at very short maturities, while the overall long term effect
of fiscal policy shocks is significant at all maturities.

The rest of the paper is organized as follows. In Section 2 we introduce the model and

the functional Beveridge-Nelson decomposition. In Section 3 we show how we may estimate



the model and make prediction with the model, and develop asymptotic theories for our
estimator and predictor. In Section 4 we extend our baseline model to include the case in
which the stationary component has a non-zero drift, the functional time series is estimated,
and/or the process is autoregressive of higher order. In Section 5 we apply our method to
study the term structure of the US government bond yields. In Section 6 we present the
simulation results. Section 7 concludes.

A word on exposition and notation. Our methodology and asymptotics rely heavily on
a basic theory of Hilbert space, which is cited frequently throughout the paper without any
specific reference. All standard notations for various notions and operations in Hilbert space
are also used in the paper without any explicit definitions. The inner product and norm
in our Hilbert space H are denoted as {-,-) and || - ||, respectively, and the tensor product
is defined by “®”. The superscript “+” is used for the adjoint of an operator on H or the
dual spaces of H and its subspaces. The identity and null operator are written simply as
“1” and “0”. For the presentation of our estimators and their asymptotics, it would be very
convenient to introduce a pseudo-inverse of a linear operator defined effectively on a proper
subspace of H. For a linear transformation T defined on a proper subspace V of H, we
define a pseudo-inverse T of T, whenever it is well defined, to be the linear transformation
such that T is the inverse of T on V, and TFv = 0 for all v € V*, where V- denotes the
orthogonal complement of V' in H. If there is no possibility of confusion, we will simply call

T+ the inverse of T on V, or even more briefly, the inverse on V.

2 Model and Background

2.1 The Model

In the paper, we let (f;) be a functional time series, which is regarded as a sequence of
random functions taking values in a separable Hilbert space H. Formally, we may interpret
ft as an H-valued random variable defined on a probability space (Q, F,P), i.e., fy : Q — H,
for each t = 1,2,.... Throughout, we let H be given by L?(R), which is the Hilbert
space of all square integrable real-valued functions on R, and define (u,v) = {u(r)v(r)dr
and |v| = 4/{v,v) = (§|v|>(r)dr)*/? to be the inner product and the norm defined in H,
respectively. The Hilbert space L?(R) of square integrable functions on R has been used
to deal with functional data in economic and financial applications. For example, Kneip
and Utikal (2001) model the density functions in L?(R) and Kargin and Onatski (2008)
analyze the Eurodollar futures rate curves in L?(R) with common support [0,1]. Hu et al.
(2016) study the dynamics of the demeaned density functions, which belongs to a subspace

of L?(R) consisting of all functions integrated to zero with common support given by a



compact subset of R.
We suppose that the dynamics of the functional time series is given by the first-order

functional autoregressive model (FAR). To be specific, we let (f;) be generated as

fr = Afi1 + e, (1)

where A is a bounded linear operator on H and (&) is a functional white noise whose precise
meaning will be defined later. The operator norm is also denoted by ||, and therefore, we
have ||A]| = sup,ep [|Av|/|v|. Since A is bounded, there exists a constant K such that
|Av|| < K |jv| for all v € H.

The Hilbert space H is separable and admits a countable orthonormal basis. Therefore,
H-valued random variables may be viewed as the infinite dimensional generalizations of
random vectors. Just as an operator on a finite dimensional vector space has a matrix
representation, the autoregressive operator A may be thought of as an infinite dimensional
matrix with respect to any given orthonormal basis of H. In this way, the FAR may be
conceptually regarded as an infinite dimensional generalization of the vector autoregression
(VAR), which has been extensively used in time series econometrics. Indeed, FAR and VAR
share many features. For example, just as any VAR(p) has a VAR(1) representation, any
FAR(p) can be written in the FAR(1) form. This implies that the first-order Markovian
assumption employed in (1) is not restrictive in any essential way. However, the introduction
of infinite dimensionality does create technical difficulties. As we shall see, one problem is
the lack of functional error correction representations for a very important class of functional
time series with unit roots. Another issue is the so-called ill-posed inverse problem.

We first introduce some basic notions related to H-valued random variables. For an
H-valued random variable f with E|f|| < oo, we define its mean Ef by the element in
H such that for any v € H we have (v,Ef) = E{v, f).! Moreover, for any mean-zero H-
valued random variables f and g such that E|f|* < o and E |g|* < o, we define their
covariance operator E(f® g) by the operator on H such that for any u and v in H, we have
{u, E(f ® g)v)y = Eu, f){v, g). Naturally, we call E(f ® f) the variance operator of f for
any mean-zero H-valued random variable f such that E||f|* < co. Using an orthonormal

basis (vx) of H, we may also define Ef and E(f ® g) more explicitly as

o0]

Z Ev, f))vr, and E(f ®g) = Z D (Ewi, £, ) (0 @ vy).
i=1j5=1

!Note that E(-, f) is a bounded linear functional on H, and therefore, Ef exists by the Riesz representation
theorem.



An H-valued white noise (g¢) is a functional time series such that Ee; = 0 for all ¢, E(s; ®
gt) = X for all t and E(e, ®¢e5) = 0 for all ¢ + s.

If |A"|| < 1 for some integer r > 1, the stochastic difference equation (1) has a stationary
solution. This is shown in Bosq (2000). Stationary functional autoregressive processes have
been studied by Bosq (2000) in the general setting, and by Hu et al. (2016) in a more specific
setting of distributional processes with demeaned densities estimated from cross-sectional
or intra-period observations.

In this paper, we consider the functional autoregressive model (1) in the presence of
unit roots. Such a model is necessary to analyze the functional time series with strong
persistence. Many functional time series we deal with in economic and financial applications
appear to have unit roots. For instance, Chang et al. (2016b) find unit roots in the process
of the density functions for the monthly cross-sectional earnings distributions in the United
States, and for the intra-month S&P 500 high-frequency return distributions.

Subsequently, we denote by A(A) the spectrum of A, i.e., the set of all complex numbers
A such that A — A is not invertible on H. Note that, if H is finite dimensional, A(A) is
the set of all eigenvalues of A. However, when H is infinite dimensional, A\(A) is in general

larger than the set of all eigenvalues of A. We assume the following throughout the paper.

Assumption 2.1. We assume that
(a) A is compact,
(b) 1€ A(A), and
(c) (e¢) is independent and identically distributed with mean zero and covariance operator

3], is independent of fy, and E HStH4 < 0.

A compact operator A on H is an operator that maps the closed unit ball in H to a set
whose closure is compact. It is well known that any linear operator on H is compact if and
only if it can be approximated (in operator norm) by a sequence of finite rank linear opera-
tors. Part (a) of the above assumption is therefore required for a general infinite dimensional
operator A to be consistently estimable by finite rank linear estimators.? In addition, it
admits a singular value decomposition of A, which provides interesting interpretations of
the dynamics in the functional process as in Hu et al. (2016). Part (b) introduces unit roots
in the process (f;). Part (c) is quite standard. The assumption of (¢;) being independent

and identically distributed with E H€tH4 < o is made for simplicity, and we may readily

20ne may potentially allow for consistently estimable non-compact operators. For example, one may set
A to be determined by a finite dimensional parameter. Or one may use a sequence of non-linear operators
to approximate A. However, the former approach greatly restricts the space that A lies in and the latter
approach introduces non-linearity and therefore technical difficulties in inference. In view of these drawbacks,
we shall stick with the compactness assumption for the autoregressive operator A.



allow (g¢) to be a general martingale difference sequence with sup,>; E( lee] 2T | Fi1) < o0
a.s. for some € > 0 without affecting our subsequent results.

Our functional autoregressive model may be used to study the dynamics of different
characteristics of a functional time series. To be specific, for any v € H, we define (v, f;) to
be the v-characteristic of f;, i.e., the characteristic of f; generated by v. For example, if f;
is the density function of a distribution and v is the k-th order power function defined by
v(z) = x¥, the v-characteristic of f; is the k-th moment of the distribution. Now for any

v € H, we may consider the process of the v-characteristic given as

(o, fry = v, Afio1) + (v ey = (A%, fi—1) + &1 (v),

where (g¢(v)) is a scalar white noise process. We may view (A*v)(x) as the response of (v, f;)
to an impulse to f;_1 given by a Dirac-d function with a spike at z, where the superscript
* denotes the adjoint. Similarly, A*v may be viewed as the response function of (v, f;) to

impulses to f;_;.

2.2 Functional Beveridge-Nelson Decomposition

It is very useful to obtain the Beveridge-Nelson decomposition of a functional time series
(ft) generated by an FAR(1) as in (1). To present the functional Beveridge-Nelson decom-
position more effectively, we first introduce some notation. In our subsequent discussion, we
use the subscripts or superscripts “P” and “I” to denote curves, functions and operators
related to the permanent and transitory components of ( f;), respectively. We let I'p and I'p
be two non-intersecting Cauchy contours on the complex plane such that 1 lies in the inner
domain of I'p and A(A)\{1} lies in the inner domain of I'r. Such a separation of elements
in A(A) is guaranteed, since 1 cannot be a limit point of A(A) by the compactness of A. We

define two operators on H by

1
IIp = — — At
P 21 ()\ ) dA
I'p
and .
Il = — — A7t
T 21 ()\ ) dA
I'r

where the contour integral is defined as the Stieltjes integral and the convergence is in the
operator norm. A standard argument in complex analysis shows that the definitions of I1p

and Il are independent of the choices of I'p and I'r. Finally, we denote the images of Ilp



and Ilp respectively by Hp and Hr.

Theorem 2.1. Let Assumption 2.1 hold. Then we have
(a) H=Hp® Hr,
(b) Hp and Hr are invariant under A, and

(¢) Hp is finite dimensional.

Part (a) of the above theorem implies that [Ip+II7 = 1, and we may uniquely decompose

fo=f+ f (2)
where
[ =Tpfy and [ =Tzf,
and similarly, &, = e’ + ! with ¢f’ = llpe; and & = lyey, for t = 1,2,.... Note that here

and elsewhere in this paper, we denote the identity operators on H and its subspaces by 1.
Part (b) implies that Aff € Hp and Af! € Hr, and therefore, we may easily deduce that

£ =ApfEy+ef (3)
and

fl=Arfly+ef (4)
fort=1,2,..., where Ap and Ar denote the restrictions of A on Hp and Hr, respectively.

Part (c) means that (f) is finite dimensional. Figure 1 gives a graphical presentation of
our decomposition, where each subspace is represented by a one-dimensional line.

Let Hp be ¢-dimensional, and Ap be the linear transformation on Hp. It follows that
Ap — 1 becomes nilpotent of degree d, i.e., d is the smallest integer such that (Ap —1)% = 0,
for some 1 < d < ¢. This is well known. See, e.g., Theorem 2 in Section 58 of Halmos (1974).

Furthermore, the degree of nilpotency completely characterizes the order of integration for

().
Lemma 2.2. Ap — 1 is nilpotent of degree d if and only if (ff) is I(d).

Although processes of higher integrated orders may be useful, time series integrated of
order one seems to be most relevant in economic applications. Therefore, we assume that
Ap — 1 is nilpotent of degree 1, i.e., Ap = 1, in which case (ff’) becomes a random walk.

Moreover, we let | A%|| < 1 for some r > 1, so that (f{) is stationary.

Assumption 2.2. Ap =1 and |A],| <1 for some integer r > 1.



Figure 1: Decomposition of Functional Time Series

Hp

Notes: This figure illustrates the decomposition of a functional time series (f;) into its permanent compo-
nent (ff) and transitory component (ff). The permanent subspace Hp and transitory subspace Hr are
represented by one-dimensional lines.

Under Assumptions 2.1 and 2.2, (f;) becomes an I(1) process with ¢ unit roots. In

particular, (3) reduces to
=t +el (5)

for t = 1,2,..., and (4) defines a stationary functional autoregressive process (f{). Conse-

quently, we have the following decomposition theorem.

Theorem 2.3. Let Assumptions 2.1 and 2.2 hold. Then the decomposition introduced in
(2) becomes the functional Beveridge-Nelson decomposition, with (fF) and (f1') representing
the permanent and transitory components of (fi), whose dynamics are given by (5) and (4)

respectively.

It is also useful to introduce the decomposition of the dual space H* of H corresponding
to our decomposition of H = Hp @ Hp. As is well known, H is its own dual space, i.e.,

H = H* by the Riesz representation theorem. We let
H*=Hp®Hrp

with
H} = Hf and Hi = Hp,

where H 1% and H% are the orthogonal complements of Hp and Hr, respectively.



For v € H}, we may easily deduce that

<v7ft> = <U7ftP> = <’U7ft]i1> + <Ua€ip> = <U7 ft—1> + <v75t>'

This implies that ((v, f;)) is a random walk. On the other hand, for v € H7, we have

(v, fiy = (v, fi5),

and therefore, ((v, f;)) is a stationary process. In sum, the coordinate process ({v, fi))
becomes a random walk or a stationary process, depending on whether v € Hp or v € HF,
respectively.

Let A* = A} 4+ A}, where A}, and A% are A* restricted on H}, and H7, respectively.

Lemma 2.4. Let Assumptions 2.1 and 2.2 hold. Then A% = 1.

Therefore, we have A} =1 as well as Ap = 1.

Subsequently, we denote Hp and Hy by Hy and Hg, which will be referred to as the
nonstationary subspace and the stationary subspace of H, respectively. Under Assumptions
2.1 and 2.2, we have

H=Hy®Hg, (6)

and for v € Hy and v € Hg, ((v, f)) is nonstationary and stationary, respectively. Unlike
the decomposition H = Hp @ Hr in Theorem 2.1, the decomposition in (6) is orthogonal.
We define IIy and Ilg to be the orthogonal projections on the nonstationary and stationary

subspaces Hy and Hg of H, and let

N =Tnf and f°=Tgsf (7)

for t =1,2,.... Our subsequent theoretical development will rely on the decompositions in
(6) and (7). See Figure 2 for the graphical presentation of the decompositions of H and its
dual space H* we introduce. The dotted lines represent the projections Il and Ilg, and

the dashed lines represent the projections Ilp and Ilp.

2.3 Finite Dimensional Case

To see how our model and framework are related to the existing literature on VAR with
unit roots and cointegration, let H = R™ and (f;) be a usual m-dimensional time series.

In this case, the autoregressive operator A reduces to an m x m matrix. If we assume that

10



Figure 2: Decomposed Subspaces

Hp = Hy

N
ft AT .

Hy

T = Hs

Notes: This figure illustrates the decomposition of the Hilbert space H into the permanent subspace Hp
and the transitory space Hr, and the decomposition of the dual space H* = H into the stationary space H}:
and the random walk dual space Hp. It also presents the decomposition of the functional time series (f:)
into its nonstationary component ( N ) and stationary component ( f£). The projections on the stationary
and nonstationary subspaces are represented by dotted lines, and the projections on the permanent and
transitory subspaces are represented by dashed lines.

there are ¢ unit roots for 0 < £ < m, we may let
A=1+af
and write

Aft=af fi1 + e, (8)

where « and 3, which are identified only up to their ranges, are m x (m — ¢) matrices of
parameters such that the (m — ¢) x (m — ) matrix o/ is nonsingular. Under Assumptions
2.1 and 2.2, we may write the FAR in (1) as the ECM in (8), where (f;) is I(1), and (8’ f;)
is stationary with each column of § representing a cointegrating relationship in (f;). In our
subsequent discussion, we denote by a; and 3 the m x £ matrices such that o/, = 0 and
BB =0, where a; and (| are again identified only up to their ranges.

For (f:) generated by the ECM in (8), we have

Hp =R(fL) and Hr =TR(a),
since AB; = f1, AR(a) € R(a), and R(a) ® R(5L) = R™. Furthermore, it follows that

Hj = Hf =R(ay) and Hj = Hb = R(B),

11



which implies that (o) f;) is a unit root process and (8’ f¢) is a stationary process. We may

explicitly obtain the projections IIp and Il as
Ip = Bi(a/ f1) ') and Tp =a(f'e)'f,

respectively. Note that the subspace Hp is defined by Granger as the attractor space, and
the subspace H7 is often referred to as the cointegrating space.

Recall that we also define Hp and H7 to be the nonstationary subspace Hy and the
stationary subspace Hg, respectively, which decompose H = RP into two orthogonal sub-
spaces. The projections IIy and IIg on the two orthogonal subspaces Hy and Hg are given
by

Iy = f(B161) 6L and Tis = B(8'8)~'4,

respectively.

3 Estimation, Prediction and Asymptotic Theory

3.1 Preliminaries

Functional Limit Theory For our asymptotics of FAR with unit roots, we need an

invariance principle in H.

Lemma 3.1. Let Assumptions 2.1 and 2.2 hold. If we define
o 1 o)
W(T) = — Et
Vn &

for r €[0,1], then W —4 W as n — o, where W is Brownian motion on H with variance

operator X.

For more discussions on Brownian motion in Hilbert space, the reader is referred to Kuelbs
(1973).
For (f}V), we write

=+ =1

for t = 1,2,..., and note that (ff) is a random walk driven by the innovation (¢f), i.e.,
f£=fF, +ef fort =1,2,..., and that (ff — f7) is stationary. It follows from Lemma
3.1 that if we define



for r € [0,1], then Wp —4 Wp as n — o0, where Wp is a Brownian motion on Hp
with variance ¥p = IIpXII},. Therefore, if properly normalized, ( ff) behaves like Wp
in the limit. Note that Xp is finite dimensional and of rank ¢, which implies that Wp is
degenerate and takes values only in an ¢-dimensional subspace Hp of H. On the other
hand, since f! = Apfl | + el fort = 1,2,..., the variance operator of (f{) is given by
S o AESr AR with Sp = IIpSIT%. Since

I =T,
the variance operator of (f;”) is given by g = Ig( Y5, ALSp A% M.

Asymptotics for Sample Variance Operator Let n be the sample size, and define

the unnormalized sample variance operator I of (f;) by

~

n
I'= (ft ® ft)7 (9)
t=1
which is decomposed as
f = 712TNN + TLFNS + nFSN + nfss, (10)
where
= IINTII N 1 &
N 5 _ﬁZ(ftN@)ftN)?
i3
Too = - _
ss - - ;(ft ® ft);
_ MyTTg 1 &
Tys = — — = - 2 (f' ®f),

and Tgy = Txs.
Lemma 3.2. Let Assumptions 2.1 and 2.2 hold. Then
1

Tyny =gy = J (Wp ® Wp)(r)dr,
0

0
TSS —p I'gs =1lg (Z AI%ZTA;IC> Ilg
k=0

13



as n — oo. Moreover,
Ins =0,(1) and Tgy = 0,(1)

for large n.

On the /-dimensional nonstationary subspace Hy of H, the sample variance operator of

2

(ft), if normalized by n™*, converges in distribution to I'yy, which is a random operator.

On the other hand, on the stationary space Hg of H, the usual sample variance operator of
(f:) normalized by n~!

it follows from Hu et al. (2016) that

converges in probability to its common variance operator. In fact,

”fss — FSSH =0 (n_1/2 log1/2 n) a.s.,

under Assumptions 2.1 and 2.2. Note that

1I 11 ~ (11 1I T T
7N+7S T 7N+7S — NN +ﬁ+0p(n_1/2)’
n  \/n n  \/n n? n

which implies that, if we normalize IIy and IIg appropriately, the terms I'yg and Tgy
become negligible in the limit and do not appear in our asymptotics. The unit root and
stationary components of (f;) are therefore asymptotically orthogonal. This extends the
asymptotic orthogonality of the unit root and stationary components in finite dimensional

nonstationary time series, which is shown in, e.g., Park and Phillips (1989).

Functional Principal Component Analysis Since T is self-adjoint and positive semi-
definite, it has real and nonnegative eigenvalues, M=o ;\n, with the correspond-
ing eigenfunctions 9y, ...,0,, which are orthogonal. We may assume that || = 1 for
k =1,...,n. In fact, the eigenfunctions 01, ..., 0, are the (normalized) functional principal
components which are used widely in functional data analysis. We let (Ax(I'nn), ve(Tnn))
be the pairs of eigenvalues and eigenfunctions of I'yx such that A\ (I'yn)’s are in descend-
ing order. Similarly, we define (A\x(I'ss),vk(I'ss)) to be the ordered pairs of eigenvalues
and eigenfunctions of I'gg such that A\x(I'ss)’s are in descending order. For expositional
convenience, we assume that the eigenvalues (\)g~, are different from each other.3 For
definiteness, we assume that (vg(T'nyy)) and (vi(I'sg)) are normalized and that their signs
are aligned with (), i.e., (O, vp(Tnn)) = 0 for k = 1,...,¢, and (D¢, vk (Tss)) = 0 for
k =1,2,.... The following lemma follows directly from Chang et al. (2016b).

3We could potentially allow for multiplicity. However in that case the eigenfunctions could not be uniquely
identified even after normalization, which introduces expositional complications.

14



Lemma 3.3. Let Assumptions 2.1 and 2.2 hold. Then
(2N, 1) —a A(@vw), veTyw))

as n — oo jointly for k=1,...,¢, and

(N N, D) —p ML), vk (Tss))
asn — o fork=1,2,....

The eigenvalues associated with the nonstationary and stationary subspaces diverge at
different rates, and this was used by Chang et al. (2016b) to develop a consistent test for the
number of unit roots, or equivalently, the dimension of nonstationary subspace ¢ in general
functional time series with unit roots. The ¢ leading functional principal components (@k)f;:l
converge in distribution to the ordered eigenfunctions (vk(F N N))izl
I'nyy on Hy introduced in Lemma 3.2. Although (vk(FNN))f;zl span Hy a.s., they are not

of the random operator

deterministic but random functions. The rest functional principal components (@kM)Z;f
converge in probability to the ordered eigenfunctions (vk(FSS))Z;f of the deterministic
operator I'gg defined explicitly in Lemma 3.2. It is clear that we need normalizations
by n=2 and n~! for the eigenvalues (S‘k’)iﬂ and (5\k+g)z;f, respectively, by Lemma 3.2.
Throughout the paper, we let vi,¢ = vip(I'ss) for k = 1,2, ... for notational brevity, so that
(Uk+0) gL spans Hg. Moreover, we let (Uk)f;:l be an arbitrary set of functions, which spans
Hpy. Then (vj){2, is an orthonormal basis of H such that (vg)}_; spans Hy and (vg)i>, 4
spans Hg.

Once (0y) are obtained and the number ¢ of unit roots is known, we may estimate the

projection Il on the nonstationary subspace Hpy by
R ¢
Ty = ) (i ® ), (11)
k=1

and the projection IIg on the stationary subspace Hg = Hﬁ by ﬁg =1- ﬁN. As shown in
Chang et al. (2016b), we have

ﬁN =1y + Op(nfl) and ﬁg =1Ilg + Op(nfl)

for large n, under Assumptions 2.1 and 2.2. As discussed, we may consistently estimate the
nonstationary space Hy by the subspace of H spanned by (@k)izl, although (@k)izl does

not converge to (vg)%_, spanning Hy a.s. or in probability.
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Let
N =Tinfe and f7 =Tigf;, (12)

and redefine T'y, T'ss, I vs and T gy using ( ftN , j?;s ) in place of (1, f7), respectively. Then
the differences between the newly defined I'yx, I'sg, I vg and their original versions are only
of order Op(n_l). In particular, the newly defined I'yn and I'gg are asymptotically equiva-
lent to their original versions, whose asymptotics are derived in Lemma 3.2. Therefore, we

will not distinguish the new versions from the old ones.

I1l-Posed Inverse Problem We may easily see that I'yy is invertible on Hy and
F]J([N is well defined. However, I'ss = E(f ® f) is not invertible on Hg, since I'sg =
S i1 ek @ vg) with 37,1 A, < oo under our condition E[ f{|* < o0, which means
in particular that A\ — 0 as k — o0, and therefore, FES is not well defined.* This creates
the so-called ill-posed inverse problem in estimating the autoregressive operator A, which
involves inversion of the sample variance operator of (f;). To deal with this ill-posed inverse
problem, we use the standard approach in functional data analysis, which will be explained
below.

Let m,, be a sequence of numbers such that ¢ < m,, <n and m,, — oo with m,/n — 0
as n — 00, which we subsequently write m instead of m,, for notational brevity. Moreover,
let

fo=Tf, and [’ =TIsf, (13)
fort =1,...,n, where
M= > (0,®0), and Ig= > (i ®1n), (14)
k=1 k=£+1

from which it follows immediately that
ﬁ=ﬁN+ﬁS and ﬁZﬁN-i-ﬁS

for t = 1,...,n, where Iy and f7 are defined in (11) and (12), respectively. Note that
ﬁN + ﬁs # 1, which is in contrast with ﬁN + ﬁs = 1, where ﬁs =1 —ﬁN as defined earlier.
To deal with the ill-posed inverse problem in estimating the autoregressive operator A,

we use (ﬁ) in place of (f;) to approximate the inverse of the sample variance operator of

4In fact, the operator I'ss with ZZO:ZH AL < o0 is said to be nuclear or trace-class.
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(ft). Note that

(E(ft@)ft) Z ! (O ® k),

e

=
>
F

while

M:

(0 ® ),

y>

(t_ (ﬁ@ﬁ) g

which explains the reason why we use (ft) to solve the ill-posed inverse problem in the

sample variance operator of (f).

3.2 Estimators and Their Asymptotics

Let

n n +
(Z £ ® fi 1> (Z(ﬁ_1®ﬁ_1)> : (15)

t=1

where (ﬁ) is defined in (13). This is the commonly used estimator for the autoregressive
operator A. Bosq (2000) and Hu et al. (2016) use the same estimator to analyze stationary
functional autoregressions.

To develop asymptotics for fi, we define a sequence (7i) for k = ¢+ 1,£ +2,... by
Toe1 = 2¢/2(Nog1 — Aere) "t and 7, = 2¢v/2max{(Ag_1 — M) (Mg — Ay 1) ) for k> £+ 1,
and introduce the following assumption.

Assumption 3.1. logn(>" ., Tk)2/(n/\3n) — 0 as n — .

Note that Assumption 3.1 does not put any actual restrictions on the time series (f;) itself.
Since " ;.1 T is increasing in m and A, is decreasing in m, it merely controls how fast
m may grow as n — o0. That is, it only imposes a restriction on how we may choose m as a
function of n. The following theorem provides asymptotics for our autoregressive operator

estimator A. In what follows, we let
A= All,

where 11 is defined earlier in (14).

Theorem 3.4. Let Assumptions 2.1, 2.2 and 3.1 hold. Then

a4
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as n — 0. On Hy, we have

n(A—A) -4 (f(dW@WP)) (f(wpmvp)>+

0 0

as n — o0. Moreover, for any v ¢ Hy, we have

vn (A —A)v -4 N(0,%)

Sm (V)

2

2 (v) = 30y Ay ks v)?, and N(0, %) is a Gaussian random element

as n — o0, where s

taking values in H with mean zero and variance operator 3.

Our estimator A of the autoregressive operator A in (15) is consistent. The limit behaviors of
A are quite distinctive on Hy and elsewhere. In fact, A requires distinctive normalization
factors and yields different types of limit distributions on Hy and elsewhere. On Hy,
n(/I — A) converges weakly in operator norm to a nonstandard distribution represented
as a function of Brownian motions. Unfortunately, as shown in Mas (2007), A — A does
not converge weakly in any norm topology under any normalization. Nevertheless, we may
still consider pointwise weak convergence to establish asymptotic normality of (121\ — A)v for
v ¢ Hpy. Note that the convergence rate of (/Al— Z)U for v ¢ Hy depends on v. Specifically,
(121\ — A)v converges at the usual y/n-rate if Y77 ; A\ *(vg, v)? < o0, and converges at a rate
slower than /n if 357 | A, 'k, v)? = 0.

Our nonstationary asymptotics in Theorem 3.4 are coordinate-free, and do not rely on
any particular coordinate system. When H = R™ and Hy = R(fL) as in Section 2.3,
we may present our asymptotics more explicitly using a coordinate system given by the
column vectors of a particular choice of 3, in which we represent v € Hy as u € R¢ such

that v = B, u.®> If such a coordinate system is used, we have

n(A-1)8L —q (Ll dWV];) <£ VPV]D) B , (16)

where Vp is an ¢-dimensional Brownian motion defined as
Wp=p8.Vp with Vp= (| 8.) o/, W.

Note that A = A in this case, and Vp is uniquely defined with any choice of o such

®Here we assume that 8. is of full column rank. As is well known, R(B1) = R(8.T) for any nonsingular
matrix T, and therefore, 5 is not identified uniquely for a given Hy. Therefore, we must choose a particular
B for which (81) = Hn to use it as a coordinate system here.
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that R(c1) = Hj. The asymptotics in (16) may be viewed as a coordinate version of our
asymptotics in Theorem 3.4. As expected, if m = £ = 1, our limit distribution reduces to a
scaled Dickey-Fuller distribution.

Theorem 3.4 shows that our estimator A of the autoregressive operator A contains bias
terms on both the nonstationarity and stationarity subspaces, i.e., Hy and Hg. To analyze

the bias terms, it is necessary to introduce some technical conditions.

Assumption 3.2. We assume that
(a) (Ag) is convex in k for k large enough,
(b) n=12m521og? m — 0, and
(c) ZZZH Z;ozm+€+1 Ai}‘j/()‘i - >‘j)2 = o(m)
as n — 0.

The condition in (a) is mild and is satisfied by many sequences of eigenvalues decaying at

1/576) for

polynomial and exponential rates. The condition in (b) holds as long as m = O(n
any 0 > 0, and m does not grow too fast as n — c0. The condition in (c¢) is more stringent,
though not prohibitively so. For many practical applications, it appears that (\;) decays
geometrically and we may set A\, = p¥ for some 0 < p < 1. In this case, we may easily
deduce that >;", ., Z;O:m—i-f—i-l Aidi/ (N — Xj)2 = 0(1).

Let Hg be the subspace of H spanned by (vx)jL, | and define Il5 to be the orthogonal
projection on H g, and similarly, let H be the subspace of H spanned by (vj)}; and define
II to be the orthogonal projection on H. Note that H g is an m-dimensional subspace of

Hg, and that H = Hy ® Hg and II = Iy + 1.
Corollary 3.5. Let Assumptions 2.1, 2.2 and 3.2 hold. Then for any v e Hy,

(A= Ay = o,(n~Y?m*?),

and, for any v ¢ Hy,

(A= A)v = op(n™m'?) + O (AL — o]

for large n.

Corollary 3.5 provides the orders of the bias terms in our autoregressive operator es-
timator A. The bias terms become negligible as long as m — o as n — . Note that
(1-II)v - 0 as m — oo for any v e H.

Once we obtain the autoregressive operator estimator, we may obtain the residuals by
&= fi—Afia
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and estimate X by

S\H

n

The following corollary is an obvious consequence of Theorem 3.4.

Corollary 3.6. Let Assumptions 2.1, 2.2 and 3.1 hold. Then
DEDE

asn — .

In obtaining the estimator A of A introduced earlier in (15), we do not impose the
restrictions implied by the presence of unit roots in (f;). In the following, we propose

another estimator A of A with those restrictions, which is defined as

A=TI+ (i Af® fi- 1>(i il 1®ft1> ; (17)

and let
B=(A-1I and Bg=(4- 1.

Note in particular that Bv = v and Bgv =0 for any v e i ~N- We may easily deduce that
Theorem 3.7. Let Assumptions 2.1, 2.2 and 3.1 hold. Then
HA - AH 0

as n — o0. On Hy, we have
53] =t

for large n. Moreover, for any v ¢ Hy, we have

Vi (B — Bs)v —4N(0,%)

Sm(v)

as n — o0, where s2,(v) = YL, A g, v)2, and N(0,%) is a Gaussian random element

taking values in H with mean zero and variance operator 3.

3.3 Beveridge-Nelson Decomposition

To estimate the Beveridge-Nelson decomposition, we need consistent estimators of I1p

and Ilp, i.e., the (non-orthogonal) projections on Hp and Hp along Hp and Hp, respec-
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tively. We define their estimators as

M=
NgE

1

&~
I

1

&~
I

N
fp =Ty - ( AfN® ff_o) ( (Aff ® fin)

.
iy =g + < <A£N®ff_1>> ( <Aﬁ5®f§_1>>

s
s

to be our estimators for IIp and Ilp, respectively. Instead of ﬁT, we may also use

n n +
My = s + (Z(AﬁN ® ff_o) (Z(Aﬁs ® fin)

t=1 t=1

_ (i(Aﬁ@ﬁS_n) (i(Aﬁ%ﬁS_l))

t=1 t=1
as an estimator for IIp. Note that ﬁp + ﬁT = 1, whereas ﬁp + ﬁT # 1.

Theorem 3.8. Let Assumptions 2.1, 2.2, 8.1 and 3.2 hold. Then
Hﬁp—ﬂp” —>p0 and HﬁT—HTH —>p0
as n — oo.

Theorem 3.8 shows that the (non-orthogonal) projections IIp and Il along Hp and Hp,
respectively, can be consistently estimated by I p and ﬁT in operator norm. On the other

hand, HﬁT — HTH +p 0.5 Nevertheless, we have ﬁT —,, Il pointwise as shown below.

Corollary 3.9. Let Assumptions 2.1, 2.2, 8.1 and 3.2 hold. Then, for any v e H,
(ﬁT — HT)U —5 0
asn — .

We may also easily deduce that (f[T — ﬁT)v —, 0 for any v € H, since (f[T — ﬁT)v =
(ﬁT — HT)v — (ﬁT —HT)U and convergence in operator norm implies pointwise convergence.
The estimated Beveridge-Nelson decomposition may now be obtained using Iip and ﬁT,
ie., fi = ﬁp + !}?;T, where
ftp = ﬁpft and ﬁ‘r = ﬁTft.

5This is because IIz is of finite rank and it cannot converge to a non-compact operator IIz in operator
norm.
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Clearly, we may also use ﬁT in place of f[T to define f?, say, for t = 1,...,n. It also follows
from Theorem 3.8 that

e =Ty — (B © 120 (Baf o 1)
Up =1Ig + (E(AftN ®ff—1)) (E(Afts ®ftS—1)>+
- (Bane ) (Bafe )

which define IIp and Iy in terms of Iy, IIg and various product moments of (f;) and

(Afe).

3.4 Forecast

Our model can be used to make forecasts. We may obtain the one-step forecast as
f n+l = Af n

where A is the estimated autoregressive operator defined in (15). Multiple-step forecasts
may be obtained by recursive one-step forecasts. The following results give the asymptotic
normality of the predictor. As one would see in the proof of the following lemma, in the
prediction procedure we follow Mas (2007) to compute A using data only up to time n — 1

to avoid technicalities.

Assumption 3.3. We assume that

(a) HF;;QAH < o0, and

(b) supp, Evg, £7Y*/A2 < K for some constant K.
1/2
SS

Loosely put, condition (a) requires that A be at least as smooth as I'¢s on Hg. Condition

(b) is satisfied whenever the tail probability of (vg, f) decreases fast enough. For example,
when (f{) is Gaussian, condition (b) holds with K = 3.

Lemma 3.10. Let Assumptions 2.1, 2.2, 3.1 and 8.8 hold. Then

n/m(A = A)f, -4 N(0,X)

as n — o, where N(0,X) is a Gaussian random element taking values in the Hilbert space

H with mean zero and variance operator 3.

Once again there is a bias term Af, — Af, in the result above. To get rid of the bias

term so as to obtain the confidence interval for an, we need Assumption 3.2 as well as an
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additional assumption.
Assumption 3.4. (n/m)>;” A — 0asn — o,

For geometrically decaying sequence of eigenvalues \;, = p*, we may show easily that

Y hemi1 Ak = O(p™). Therefore, we may set m such that n = p="™.

Theorem 3.11. Let Assumptions 2.1, 2.2, 8.1, 3.2, 3.8 and 3.4 hold. Then

V/n/m(A = A) f,, =4 N(0,3)
as n — 0.

From Theorem 3.11 we may easily deduce that for any Gaussian (¢;), we have that

~

fnJrl — fo+1 = (An — A) fr, —ens1 ~a N <0, (1 + %E)) .

Consequently, for any v € H, the a-level confidence interval for the forecast of (v, f,,) is

[0, Fatr) = 20 /(1 /)0, 50,0, Fat) + 2o/ (L4 m/m)o, Z0)] - (18)

where 2,5 = ®~1(1 — /2) and @ is the cumulative distribution function of the standard

normal distribution.

4 Term Structure of US Government Bond Yields

4.1 Preliminaries

The term structure of interest rates is one of the most important topics in finance and
macroeconomics. Since US government bonds carry almost no risk, their interest rates are
usually viewed as benchmark interest rates.

Let Py(7) be the price of a discount bond at time ¢ that promises to pay $1 7 years
ahead. The yield to maturity vy;(7) at time ¢ is defined as the average rate of return
of holding this bond until maturity, where 7 is the time to maturity. Under continuous
compounding, P;(7) = exp(—7y:(7)). The yield to maturity y;(7) thus can be calculated
as y (1) = —% In P;(7) once we observe the price of the discount bond. The graph of y; as
a function of the time to maturity 7 is called the yield curve at time t. The instantaneous
spot rate, denoted by 7y, is the limit of y(7) as 7 approaches zero. In the continuous

compounding framework, it measures the current risk-free interest rate.

23



Figure 3: Time Series of Forward Rate Curves and Its Decompositions

(a) Forward Rate Curve (b) Permanent Component
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(c) Transitory Component (d) Truncated Component
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Notes: This figure plots the time series of the end-of-month US government bond forward rate curves from
January 1981 to December 2017 and its components. Panel (a) gives the original time series of forward
rate curves. Panel (b) and (c) plot its permanent and transitory components, respectively. Panel (d) plots
everything that is not in the first five principal components.

The ratio of change in the bond’s price at any future time ¢ + 7 defined by fi(7) =
—P/(7)/P:(7) is called the (instantaneous) forward rate, which gives the implied (instanta-
neous) rate of return of holding the bond at time ¢ + 7 under the no-arbitrage condition.
The graph of f; as a function of the time to maturity 7 is called the forward rate curve. The
yield curve and the forward rate curve are related through y,(7) = %SS ft(s)ds. Since the
yield curve and the forward rate curve imply each other, they contain the same informa-
tion. However, it is usually more instructive to loot at the forward rates since they reflect
expectations for future interest rates in a more direct way. In this section, we shall study
the dynamics of the forward rate curves of US government bonds.

However, the forward rate curves are not directly observable. The Treasury only issues
bonds with a limited number of maturities. Giirkaynak et al. (2007) estimate the US
Treasury bond forward rate curves using a model of the functional form fi(7) = Bor +
Brre ™Mt Boy %6_7/7“ +53t%€_7/72t, where Bot, B1¢, B2t B3¢, V1¢ and o4 are the parameters
to be estimated in each period. They estimate the forward rate curves at daily frequency

from 1961 on.” We use their estimated end-of-month forward rate curves from January

"The Federal Reserve Board maintains a web page which posts the update of the estimated forward rate
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Figure 4: Factors and Factor Spaces

(a) HP Space (b) HT Space
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Notes: Panel (a) plots the first two principal eigenfunctions of the sample variance operator . These two
functions span Hp. Panel (b) plots the first three factor loadings in the space Hr. Panels (c¢) and (d) present
the estimated time series of the level factor and the spread factor. They are estimated as the series of the
first and the second principal scores, respectively.

1981 to December 2019. Figure 3(a) plots the time series of the forward rate curves.

There is strong nonstationarity in the forward rate curve process. In general, the trend
can be deterministic, stochastic, or a mixture of the two. However, since a deterministic
trend suggests predictability, the efficient market hypothesis implies there should be no
deterministic trend, or the deterministic trend should be very weak. In this paper, we
assume that the trend is stochastic, and use FAR(1) to model the demeaned forward rate
curve process.

The functional unit root test developed in Chang et al. (2016b) suggests two unit roots
in the demeaned forward rate curve process. Therefore we set /=2 Tn addition, we set
m = 5 to obtain the best rolling out-of-sample forecast performance, in which we use the
last one-fifth of periods as the prediction periods.

It turns out that the first five principal components explain 99.98% of variations in the
data, which justifies our choice of the value of m. The first two principal components, which
correspond to the nonstationary components in the forward rate curve process, explain
99.46% of the data variation.

Panel (a) of Figure 4 presents the first two principal eigenfunctions that span the per-

manent space Hp. It turns out that the first eigenfunction is very close to the constant

curves quarterly. See http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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function. Actually, |P,01] = 0.996, where P, is the orthogonal projection onto the space
spanned by the constant function. Following the conventional terminologies of factor anal-
ysis, we shall call the first eigenfunction the loading corresponding to the level factor of the
forward rate curves. The second principal eigenfunction is monotonically upward-sloping.
Since this component reveals information about the differences between the short rates and
the long rates, we shall call it the loading corresponding to the spread factor. The cor-
responding factors are defined as the inner products of the forward rate curves with the
two eigenfunctions, respectively. Panels (¢) and (d) of Figure 4 plot the estimated level
and spread factors. The non-stationarity feature of the two factors is evident. Panel (b)
of Figure 4 gives respectively the first three transitory factor loadings. With Hp and Hr
estimated, we may decompose the time series of forward rate curves into its permanent and
transitory components. This decomposition is presented in Panels (b) and (c) of Figure
3. This decomposition clearly separates the non-stationary component from the stationary

component.

4.2 Identification of Shocks

To investigate the dynamics of the forward rate curves, we identify three structural
shocks that drive the forward rate curves. The three structural shocks are defined in the
subspace V' spanned by the three leading functional principal components of the sample

variance operator L. Denoting by II the orthogonal projection on V', we let

g = Ilgy
for t = 1,...,n, and define the variance operator and sample variance operator of (g,) as
X =E(g ®g) and
_ 1 &
Y=— 2 (§t®§t)’
nia

respectively. For the fitted residuals (£;), the projected functional errors (£;) with £, = 1l
fort =1,...,n explain 93.3% of the total variation of (&;) over time, and therefore, most of
the temporal fluctuations of the latter are captured by the former. Note that the variance
operator and sample variance operator of (g;) are 3-dimensional whereas those of (g;) are
infinite dimensional.

We identify two permanent shocks and one transitory shock: By definition, a permanent
shock moves the forward rate curve everlastingly and a transitory shock shifts the forward
rate curve only temporarily. The first shock will be identified to be a permanent shock that

affects only the level of the forward rate curve in the long-run. The second shock will be
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identified to be a permanent shock that affects both the level and the spread of the curve in
the long-run. In this spirit, we shall label these two shocks as the level shock and the spread

shock, which are denoted as (ef) and (e), respectively. The third one will be labeled as

the transitory shock and denoted as (e} ).

To define our structural shocks more explicitly, we let (vk)%zl span V such that v
and vo span Hy and wv3 is in Hg. Further, assuming a constant function is in Hy, we
may let v; be a constant function and vy be orthogonal to the constant function without
loss of generality. They are consistently estimable by the three leading functional principal
components (9;)3_; of [. A consistent estimate for the first basis element v; may be
obtained by projecting a constant function onto the space spanned by 07 and v3. The
second basis element v may then be consistently estimated by redefining 92 orthogonal to
the estimated v using the Gram-Schmidt procedure. Needless to say, vs is consistently
estimated directly by v3.

Note that ¥ is an operator on V spanned by (vg)i_,. Therefore, it may be written
as ¥ = Z?’jzl@i,ivp(vi ® v;j) and can be effectively represented as a 3-by-3 matrix ()
whose (i, j)-th element is given by (v;, Yv;) for i,j = 1,2,3. Similarly, (¢;) takes values in
V spanned by (vg)3_;, and therefore, it may be written as g, = Zi:1<vk,§t>vk and can be
effectively represented as a 3-dimensional vector (g;) whose k-th entry is given by (v, g.).
It follows that

_ 1 &
X)) =— Z(ét] [§t),'
n
t=1
Now we let
[i) =L,
and write
€t
(e) = LQ ets )
ef

where L is a 3-by-3 lower triangular matrix, @ is a 3-by-3 orthogonal matrix, and (ef), (e;)

and (etT) are three structural shocks introduced above. Subsequently, we show that @ is
uniquely defined and our structural errors are identified.
Let the (z, j)-th element of @ be (k45) for ¢, j = 1,2,3. First, we find k3 = (K13, k23, K33)’
satisfying ||k3] = 1 and
Lk =c [HTU3]

for some constant ¢, where IIpvs is written as Ilpvg = Zizl@k,HTvg)vk and represented

by (II7vs) whose k-th entry is given by (vy, II7vs). The shock (e]) has at-impact response
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in Hp, and therefore, it only has a transitory effect on the forward rate curve. Second, for

k1 = (K11, ko1, Kk31)’, we require |k1| = 1, k) k3 = 0 and
a
Lk = 0
b

for some constants a and b. Note that the shock (ef) has at-impact response given by
avi + bus. However, we have A'v; = vy for any h > 1 and Alys — 0 as h — o, and
therefore, (e/) would have a long-run effect av; implying a shift in the level of the forward
rate curve. Finally, we define ko = (K12, k22, f32)’ simply to satisfy |[ke| = 1, khk1 = 0 and
Khkz = 0, so that at-impact response of the shock (e;) can be anywhere in V. Tt therefore
has a long-run effect, which may change both the level and slope of the forward rate curve.

Once @ is identified, we let P = L@, where P is a 3-by-3 matrix P with the (i, j)-th

element given by (m;;) for 4,j = 1,2, 3, and define the impulse response function
3 3
IRFZ(h) = Ah Z 7Tji’Uj = Z WjiAhvj,
j=1 j=1

where A is the autoregressive operator, h is the number of periods after the shock, and
i = 1,2,3 corresponds to each of the three shocks (ef), (ef) and (e] ), respectively. Since
the signs of each column of P is not identified, we normalize the sign of the first column of
P so that the response at impact to a positive level shock is positive, the second column
of P so that the response at impact to a positive spread shock is downward sloping, and
the third column of P so that the response at impact to a positive transitory shock has
a trough at the maturity of two to three years. We normalize the signs of the structural
shocks accordingly. For our impulse response analysis, we use the restricted version Ain
(17), instead of the unrestricted version Ain (15), as a consistent estimator for A.

The left three panels of Figure 5 plot the time series of the estimated three structural
shocks, and the right three panels of Figure 5 give the response functions of the three
structural shocks at impact. The level shock is a persistent shock that changes the forward
rates uniformly at all maturities. The term premium shock is a persistent shock that
affects the short forward rates and the long forward rates in opposite directions. A positive
transitory shock increases the very short forward rates by a large amount, and the effect
becomes negative very quickly as we increase the maturity, and it tends to die out when

the maturity is very large.
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Figure 5: Structural Forward Rate Shocks

(a) Level Shocks

(b) Response at Impact to Level Shocks
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(c) Spread Shocks (d) Response at Impact to Spread Shocks
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Notes: The left three panels plot the time series of the three identified structural shocks, namely the level
shocks, the spread shocks and the transitory shocks, in the forward rate curve dynamics, respectively. The
right three panels plot the impulse response functions at impact to the level, spread, and transitory shocks
respectively with their 95% bootstrap pointwise confidence bands based on 2000 repetitions.

4.3 Empirical Results

To investigate how monetary and fiscal policies affect the term structure dynamics, we
look at the correlations between the structural forward rate shocks and the policy shocks.
We also calculate the canonical correlations between the projected policy shocks and the
three structural forward rate curve shocks altogether. The monetary policy shocks are
obtained from Miranda-Agrippino and Ricco (2021) and the fiscal policy shocks are obtained
from Romer and Romer (2010). We also consider other measures for policy shocks. See
Appendix B.2 for details.

Table 1 presents the sample correlations and their significance levels obtained from the
corresponding bootstrap distributions. We find that monetary policy shock has significant

correlations with the permanent spread shock and the transitory shock. Fiscal policy shock,
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Table 1: Correlations Between Policy Shocks and Structural Forward Rate Curve Shocks

Correlations | Monetary Fiscal
Level 0.036 —0.141*
[-0.070, 0.168] | [-0.293, 0.011]
Spread 0.251*%* —0.071
[0.073, 0.402] | [-0.244, 0.203]
Transitory 0.1157 —0.092f
[-0.063, 0.371] | [-0.326, 0.073]

Notes: This table presents the correlation coefficients between monetary and fiscal policy shocks and the
three structural forward rate curve shocks. ** * and T denotes significance levels of 0.05, 0.1 and 0.32,
respectively. The square brackets give the 95% bootstrap confidence intervals based on 2000 repetitions.

on the other hand, has significant correlations with the permanent level shock and the
transitory shock. The canonical correlation between monetary policy shock and the three
structural forward rate curve shocks is estimated to be 0.296 with a 95% confidence interval
[0.125,0.504] obtained from its bootstrap distribution. The canonical correlation between
fiscal policy shock and the structural forward rate curve shocks is estimated to be 0.185
with a 95% confidence interval [0.093,0.431] obtained from its bootstrap distribution.

We also look at the impulse responses of the forward rate curve to a monetary or fiscal
policy shock. The idea is that policy shocks may induce structural forward rate curve
shocks, at the scale of the corresponding correlations estimated above, which in turn drives
changes in the forward rate curve dynamics over the horizons. The impulse responses are
then given by linear combinations of the three impulse responses where the weights are
given by the vector of the correlations between the policy shocks and the structural forward
rate curve shocks. Panel (a) of Figure 6 presents the estimated impulse response surface
of the forward rate curve to a monetary policy shock up to 36 months after the initial
shock. Panels (b), (c) and (d) of Figure 6 plot the impulse responses at impact, three
months, and three years after the shock, respectively, with the pointwise 95% bootstrap
confidence bands. The bootstrapped impulse responses of policy shocks are calculated from
the bootstrapped impulse responses of the structural forward rate curve shocks and the
bootstrapped correlations. Similarly, Panel (a) of Figure 7 presents the estimated impulse
response surface of the forward rate curve to a fiscal policy shock up to 36 months after the
initial shock. Panels (b), (c) and (d) of Figure 7 plot the impulse responses at impact, three
months, and three years after the shock, respectively, with the pointwise 95% bootstrap
confidence bands. The effect of monetary policy shocks to the forward rate curve dynamics
is significant at very short terms. The overall long term response of the forward rate curve

to a positive monetary policy shock (a rise in unexpected federal funds rate) is estimated to
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Figure 6: Impulse Responses of Forward Rate Curves to Monetary Policy Shocks with
Bands

(a) Impulse Response Surface (b) At Impact
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Notes: The left panel presents the functional impulse response surface of the forward rate curve to a positive
monetary policy shock up to 36 months after the initial impact. The right three panels present the functional
impulse responses at impact, three months, and three years after a monetary policy shock, respectively, with
the pointwise 95% bootstrap confidence bands.

be positive, but not statistically significant at the level of 0.05. The overall long term effect
of a positive fiscal policy shock (a rise in tax) on the forward rate curve is estimated to be
negative, and is statistically significant at the significance level of 0.05. By a similar exercise,
we may analyze any other feature of policy consequences regarding the term structure of
interest rates both in the short run and in the long run by investigating the functional

impulse responses of the forward rate curve to monetary and fiscal policy shocks.

5 Conclusions

We build an autoregressive model for time series of random functions taking values in
a Hilbert space with persistence. A process generated by this model admits a decomposi-
tion into a permanent component and a transitory component, representing the persistent
stochastic trend and the stationary cyclical movement in the process, respectively. We show
how to estimate the model, both without and with the unit root restriction, and how to
conduct decompositions and make predictions. The estimated autoregressive operator is

consistent under very mild conditions with different convergence rates and limit distribu-
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Figure 7: Impulse Responses of Forward Rate Curves to Fiscal Policy Shocks with Bands

(a) Impulse Response Surface (b) At Impact
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Notes: The left panel presents the functional impulse response surface of the forward rate curve to a positive
fiscal policy shock up to 36 months after the initial impact. The right three panels present the functional
impulse responses at impact, three months, and three years after a positive fiscal policy shock, respectively,
with the pointwise 95% bootstrap confidence bands.

tions in different subspaces, and the predictor is asymptotically normal, with a convergence
rate slower than the usual \/n rate. We extend our baseline model to the case in which the
transitory component has a non-zero drift term, the time series of functions is estimated
with error, and the functional process follows a general autoregressive process. We apply
our method to study the term structure of the US government bond yields. We decompose
the forward rate curve series into its permanent and transitory components, identify two
permanent structural shocks and one transitory structural shocks that drive the forward
rate curve dynamics, and find that monetary and fiscal policies are correlated with these
structural shocks. We give the impulse response surfaces of policy shocks to forward rate

curve dynamics.
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Appendix A Extensions

A.1 Model with Nonzero Drift

It is rather straightforward to extend our framework to allow for the existence of tran-
sitory component with nonzero mean in functional autoregression with unit roots. To show

how, we consider the functional autoregression
fi=v+Afia+e (19)

in place of (1), where v € Hp and A satisfies Assumptions 2.1 and 2.2. Note that v
is assumed to be in Hr, and therefore, it introduces a drift term only in the transitory
component (fI) of (f;). As is well known, the presence of a non-zero drift term in the
permanent component (ff) of (f;) would generate a linear time trend in (f;). We may

rewrite the functional autoregressive model in (19) as

Je—pn=A(fr-1 —p) + &

where = Eff = (1 — A7)"'v is in Hr.
To estimate the autoregressive operator A in (19), we need to first demean the time

series (ft), where the sample mean of the time series is given by
1 n
Tt

Subsequently, we denote the demeaned time series of (f;) by f/ = f; — f, and redefine the
operator r by

Zﬂ®ﬂ

and redefine )\; and ©; as the ordered eigenvalues and eigenfunctions of the newly defined

~

I.
Due to Corollary 3.2 in Bosq (2000), we have

O(n "%1log'?n) as.,

1 n
~ ) [ -Ef
t=1

for large n, and consequently, on Hr, all our sample statistics redefined by (f}') yield the
same asymptotics as those defined for (f;). Therefore, the use of (f{') gets rid of the non-

zero mean in (f;) without affecting any asymptotics in Hp. On the contrary, however,
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demeaning (f!') does affect asymptotics in Hp. More precisely, our previous asymptotics

involving functions of Wp are now replaced by functions of

WE(r) = Wp(r) —L W (r)dr,

i.e., the demeaned Brownian motion on Hp. The interested reader is referred to Section 4
of Chang et al. (2016b) for more details.

It is straightforward to establish the following lemma, which is analogous to Lemma 3.2.

Lemma A.1. Let Assumptions 2.1 and 2.2 hold. Then

1
Ty —4q f (WE @ W5)(r)dr
0

o0
Tss —p g (2 A{%ETA%’“> Ilg
k=0

as n — o0. Moreover, we have
= %
Ing =Tgn = 0p(1)

for large n.

Lemma C.2 continues to hold for the functional autoregression (19). Moreover, Theorem
3.3 holds with T'yy redefined as T'yy = Sé(W;i ® W5)(r)dr, and Lemma C.1 holds with
(fi) replaced by the (f}'). The following theorem shows that the demeaning procedure does
not affect the asymptotic properties of our FAR estimator and predictor. The predictor of

course should be modified as
f n+l = f + Af #
to reflect the required demeaning procedure.
Theorem A.2. Let the assumptions in Theorem 3.4 hold. Then

Hﬁ _ AH 0

and
|[4-4] =0

as n — 0. If in addition the assumptions in Theorem 3.11 hold, then

Vfm ((Fas = 1) = Alfa = 1)) —a N, 3)
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as n — 0.

In sum, when the stationary component is not mean-zero and a demeaning procedure is
required, the asymptotic results developed for the estimation and prediction of mean-zero

functional autoregression continue to hold essentially without any additional assumptions.

A.2 Regression with Estimated Functional Time Series

In virtually all practical applications, we expect that (f;) is not directly observable
and has to be estimated from either cross-sectional or high-frequency observations. In this
case, we may analyze our functional autoregressive model using the estimated functional
time series ( ft) It is also possible to allow for the presence of drift term in the stationary

component of (f;), in which case we may use ( ff ),
1 n

b _ ¢ 1 .

foefim

in place of (f;).
We denote the estimation error of f; by Ay = ft — fi. In order to preserve our asymptotic
results as in Section 3, we need to control the magnitude of (A;). We therefore introduce

the following assumption.
Assumption A.1. sup,. [|A¢ = Op(1/4/n).

Under Assumption A.1, ||A¢]| becomes negligible uniformly in ¢ = 1,2, ..., and all our
asymptotic results based on (f;) continue to hold also for (f;). The use of estimated func-
tions, in place of the true functions, therefore has no bearing on our asymptotics. This
is well expected from Chang et al. (2016b). The condition required here is not absolutely
necessary and can be relaxed if we introduce some additional assumptions. However, it is
already not stringent and expected to hold as long as the number of observations we use
to obtain ( ft) is sufficiently large compared with n, which appears to be the case for many

practical applications.

A.3 Higher Order Autoregression

In this section, we consider the functional autoregression model of order p > 1 with unit

roots. Suppose that (f;) follows an FAR(p) model given by

ft=A1fio1 +Aafio+ -+ Apfip + &y, (20)
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where A7, Ag, - -

satisfies (c) of Assumption 2.1.

Consider the direct sum HP = H®---@® H equipped with the inner product defined by

<(u17 e 7up)? (Ula T ’Up)> =
FAR(p) process in (20) as an HP-valued FAR(1) process given by

where g; = (ftvftfb T

Ay Ay Ay A
1 0 0 0
B=|0 1 0 0
[0 0 1 0 |
We define the characteristic polynomial A(z) = 2P —2P71A; —- .. — 24, | — A, for z€ C

g9t = Bgi—1+mn

and introduce the following assumption.

Assumption A.2. A(1) is not invertible, and if A(z) is not invertible, then z = 1 or |z| < 1.

Define

Ao(z)

Al(z)

AQ(Z)

7ftfp+1)a77t = (Etaov e 70) and

o
Ap—2(2) Ap-1(2)

where Ag(z) = 1 and A;(z) = zA4;_1(2) — A; for i > 0, and define

Then we have that
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2P=2  p—l
2P=3 P2

1 z

0 -
1 0

0 A(z)

-, A, are compact operators on H and (e¢) is a functional white noise that

b {ui,v;) for all v; € H and u; € H. We may rewrite the




By construction, M (z) and N(z) are invertible for all z € C, and therefore we have
A(A) = {z: A(z) is not invertible} .

However, since A\(A) is closed and 1 cannot be a limit point of A(A), Assumption A.2
implies that sup A(4)\{1} < 1. Furthermore, since sup A\(A)\{1} = lim, . HATTHl/T, there
exists € N such that |A%| < 1. Consequently, Assumption 2.2 holds for the model (21).
This suggests that whenever we have an FAR(p) model with unit roots, we may reformulate
it as an FAR(1) process and therefore all theoretical results for the FAR(1) model remain
valid for the FAR(p) model.

To estimate the FAR(p) model, we may write it in the form of (21) and conduct esti-
mation based on FAR(1), or we may estimate a finite dimensional version of the FAR(p)

model given by

(/o) = (A (fe-1) + - + (Ap) (fr—p) + () (22)
where (f;) is the m-dimensional vector whose elements are (f;, vy for k = 1,...,m, and
(A1), ..., (Ap) are m x m coefficient matrices. In actual estimation, we replace vi by ¥y.

Once the estimate (Ag) of (Ag) is obtained, we recover the estimate ;l\k of A by ;l\k =

=1 (Ax);;(vi ® vj) where (Ag);; is the (i, j)-th entry of (A).
To implement the unit root restriction in the FAR(p) setting, we could first run two

auxiliary regressions

Afy =01Af1 +O2Afi o+ -+ Oy 1Afi_pi1 +us
and

fie1 =E1Afi 1+ EAfi o+ -+ Ep 1A py1 +wy

and obtain the estimates ék,ék and residuals 4; and w;. The two regressions can be
conducted based on their finite dimensional versions as in (22). We then construct the

estimators

1 n
Suu = = Y.y @i,
ntzl

1 n
Ewwzﬁzwt(@wtv
t=1
~ 1 & .
Euw:HZut@)wt’

~
I
—



and

~ 1 &
S = = Y. W @ il
ntzl

We get the m — ¢ largest eigenvalues Ri,...,kn_¢ and the corresponding eigenvectors
b1, ..., dm_s of the operator i;wiwuijmiuw, where T denotes the pseudo-inverse in the
span of (0g),k =1,...,m. We construct
~ A~ m_é ~ ~
Yo = Zuw (Z ¢k®¢k>
k=1
and

Uy = 0 — Y&y,

fork=1,...,p—1. Then Ay,..., A, can be estimated by 121\1 = ﬁ—i-\flo—i-\/f/l, ﬁk = \’I\Jk—\’I\lk,l
for k=2,...,p—1, and A\pz f‘ifp,l.
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Appendix B Supplements to the Empirical Analysis of Term

Structure

B.1 Implementation and the Truncation Parameter

To obtain the estimator, after we get the forward rate curves, we demean the curves by
subtracting the sample mean from the time series of forward rate curves and then represent
the demeaned forward rate curve in each period with the Daubechies wavelets using 1037
basis functions. That is, each forward rate curve is represented as a 1037-dimensional
vector whose coordinates are the wavelet coefficients of the curve. We obtain the matrix
representation of the operator T asa 1037-by-1037 matrix, and obtain the eigenvalues and
eigenvectors of . Note that the eigenvectors can be transformed to eigenfunctions using
the wavelet basis. With m given, we then estimate A.

To settle down the value of m, we split the sample, using the first 4/5 of the sample to
estimate the model and the last 1/5 of the sample to conduct out-of-sample prediction and
select the value of m that yields the best prediction performance. It turns out that the best
value of m is 5. This implies that we are going to include the first five principal components
in our analysis.

Panel (d) of Figure 3 gives the component of the forward rate curve process that is not
included in the first five principal components. This component is negligible, indicating
that our approximation is precise. Figure 8 plots the cumulative ratios of the ten largest
eigenvalues of the unnormalized sample variance operator [ to the sum of all eigenvalues
of T. Tt is well known from the theory of principal component analysis that the ratio of an
eigenvalue to the sum of eigenvalues gives the proportion of data variance that is explained
by the corresponding principal component. Figure 8 shows that the first five principal
components explain 99.98% of variations in the data, which justifies our choice of the value

of m.

B.2 Alternative Measures of Policy Shocks

Besides the Miranda-Agrippino and Ricco (2021) monetary policy shocks, we also con-
sider the Romer and Romer (2004) monetary policy shocks as an alternative. The Romer
and Romer (2004) monetary policy shocks are constructed as the residuals from projecting
the Federal Reserves’ intended changes in the federal funds rate on the forecast of economic
growth, inflation, and unemployment. Their data are available monthly from January 1966
to December 1996. We use their data from January 1981 to December 1996 to align with

our forward rate curve data.
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Figure 8: Cumulative Scree Plot of the Forward Rate Curves
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Notes: This figure plots the cumulative proportions of data variance that are explained by the first ten
principal components. These proportions are calculated as the cumulative ratios of the ten largest eigenvalues
of the unnormalized sample variance operator I to the sum of all eigenvalues of I'.

The Romer and Romer (2010) fiscal policy shocks used in our empirical application are
constructed from the narrative records of tax policy actions. For each tax policy change
record, the authors determine the motivation, timing, and size of the tax change, and use
those time and size as the time and value of the shock. For our analysis, we use the combined
tax changes they provide, which include both the endogenous tax changes used to boost
growth in the near future and the exogenous changes used for other purposes. The fiscal
policy shock data are available from the first quarter of 1945 to the last quarter of 2007.
Since the fiscal policy shocks are available quarterly, we apply our first order functional
model to quarterly forward rate curves from the first quarter of 1981 to the last quarter of
2007.

Besides using the original policy shocks directly, we propose the following model z{ =
2zt +ef = f'e] + 7 where 27 is the original policy shocks (either monetary or fiscal), z; is
the projected policy shocks defined as the projection of the unadjusted policy shocks onto
el = (], €M), which consists of a collection of innovations ¢/’ to the common factors
and innovations £]* to idiosyncratic components of a large set of macroeconomic variables,

and €7 is the error term associated with the policy shocks. To obtain the innovations

5?, we consider the following factor model x;; = Z]JZI )\ijnft + ni, where x; is the i-th
standardized macroeconomic variable at time ¢, ¢t = 1,2,...7T,2 = 1,2,..., N, njft is the
Jj-th common factor with loading A;;, 7 = 1,2,...,J, and n; is the idiosyncratic component
specific to the i-th macroeconomic variable for i = 1,2,..., N. We assume that the J-variate

common factor 77tf = (n{t, e ,nﬁt)’ jointly follow a J-variate VAR process and each of the NV

individual idiosyncratic component {n},} follow an AR(p;) process. We call the innovations

e to the VAR process {n/} the common factor innovations, and the innovations e =

40



Table 2: Correlations Between Policy Shocks and Structural Forward Rate Curve Shocks

Correlations | Monetary Policy Shock Fiscal Policy Shock
Projected Original Projected Original
Level 0.023 —0.010 —0.141* —0.141*
[-0.133, 0.168] | [-0.137, 0.164] | [-0.293, 0.011] | [-0.293, 0.011]
Spread 0.299* 0.289* —0.071 —0.071
[-0.139, 0.490] | [-0.135, 0.487] | [-0.244, 0.203] | [-0.244, 0.203]
Transitory 0.091 0.074 —0.0927 —0.0927
[-0.132, 0.358] | [-0.133, 0.353] | [-0.326, 0.073] | [-0.326, 0.073]

Notes: This table presents the correlation coefficients between Romer and Romer (2004) monetary policy
shocks and Romer and Romer (2010) fiscal policy shocks and the three structural forward rate curve shocks.
The results obtained using both the projected policy shocks and the original policy shocks are reported.
#% % and T denotes significance levels of 0.05, 0.1 and 0.32, respectively. The square brackets give the 95%
bootstrap confidence intervals based on 2000 repetitions.

(elf,...,eX,) to the individual AR(p;) processes nf = (nf,...
innovations. For {x;}, we use the set of variables in the FRED-MD/FRED-QD database

developed by McCracken and Ng (2016), which contains 127 macroeconomic variables at

;M) the macroeconomic

monthly frequency and 236 macroeconomic variables at quarterly frequency. We include
three factors chosen by the eigenvalue ratio test, and the orders of the VAR and AR models
are determined by BIC.

There are at least two merits of using projected policy shocks rather than the original
policy shocks. First, projecting the policy shocks onto the span of the macroeconomic and
common factor innovations purges the indirect effects of policy shocks to the forward rate
curves that work through first affecting macroeconomic variables. Second, the projection
provides a way for us to interpolate and extrapolate in case we have missing values in the
original policy shocks data, although in our analysis we do not deal with data missing values.

Table 2 presents the sample correlations between the Romer and Romer (2004) monetary
policy shocks and the Romer and Romer (2010) fiscal policy shocks and the three structural
forward rate curve shocks. For the shocks, both the original version and the projected
version are used. It turns out that using the projected shocks instead of the original shocks
does not change the results in any statistically significant way. The results using these
alternative policy shocks turn out to be similar comparing to the results in Table 1 in
the main text. Fiscal policy shock has significant correlations with the permanent level
shock and the transitory shock. Monetary policy shock has significant correlations with the

permanent spread shock, although not with the transitory shocks.
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Appendix C Mathematical Proofs

The following lemma, providing the orders of the interaction terms, is useful in the proof
of asymptotics A defined in (15).

Lemma C.1. Let Assumptions 2.1 and 2.2 hold. Then

(et ® fi)] = Op(v/n)  and = Op(n)

L

Z 5t®ft 1)

for large n.

The terms in the above theorem have orders that are the same as their finite dimensional
counterparts. See, for example, Lemma 2.1 in Park and Phillips (1988).
Also, the following lemma from Hu et al. (2016) is useful.

Lemma C.2. Let Assumptions 2.1 and 2.2 hold. Then
Hfsg — FSSH =0 (nil/Q log1/2 n) a.s..

Moreover,

sup ‘n_ljxk - )\k‘ < Hfss - FSSH
k=6+1

and

|6 — vk < 7 [Tss — Tss|

fork=0+1,0+2,....

Proof of Theorem 2.1. We use tools from functional calculus in this proof. We refer
interested readers to Gohberg et al. (1990), in particular section 1.1, 1.2, II.1 and II.3, for
details.

Since A is a compact operator on a separable Hilbert space H, A(A) is at most countable
and could have only 0 as a limit point. This implies that we may separate {1} from the
other elements in A(A) by two non-intersecting Cauchy contours I'p and I'r specified in
Section 2.2. It follows from Lemma 2.1, Theorem 2.2 and Corollary 2.3 in Chapter 1 of
Gohberg et al. (1990) that IIp + IIp = 1, IIplly = 7Ilp = 0, IIp is the projection onto
the subspace Hp with kernel Hy, Il is the projection onto the subspace Hp with kernel
Hp, H = Hp ® Hp, and that the two subspaces Hp and Hrp are invariant with respect to
A. Also, since all non-zero elements in A\(A) are eigenvalues of finite type of A, we have

that Hp is finite dimensional. O
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Proof of Lemma 2.2. Clearly, 1 — Ap is nilpotent of degree d on Hp if and only if 1 — A%
is nilpotent of degree d on H},. However, 1 — A} is nilpotent of degree d on H}, if and only
if there is a basis including v, (A% — 1)v, ..., (A% — 1)~ 1o for H}, with some v € H} such
that v # 0, as shown in Theorems 1 and 2 of Section 57 in Halmos (1974).

Since A} — 1 is nilpotent of degree d, we have
(A — 1) = Ap(Ap — 1) — (4 1) =0,

and therefore,

<(P—1 vft> <A* dlvApr>< —1d1vef>
:<AP_ dl,Uft1> <AP—1 v€t>

which implies that (((A% — 1)1, fF)) is I(1).

For d = 2, however, we have
Ap(Ap — 172 = (Ap — )72 4 (4 — 1)

from which it follows that

<(AP—1 ”ft> <AP_1 UAPf£1>+<A*_1d_2v’€f>
= {(Ap =120, 1)+ ((Ap = 1), £ )
+< Ap —1)? U5t>

This shows that ({(A% —1)%"2v, fF)) is I(2). By the usual mathematical induction, we
may now readily show that (<U, r >) is I(d), and the proof is complete. O

Proof of Lemma 3.1. It follows from Theorem 2.7 in Bosq (2000) that

1 &
- €t —d N(Oa E)
Ve &

where N(0,3) is an H-valued Gaussian random element with variance operator 3. The

invariance principle then follows immediately from Corollary 1 in Kuelbs (1973).
O

Proof of Lemma 3.2. See Lemma 3.1 in Chang et al. (2016b). O
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Proof of Theorem 3.3. See Theorem 3.3 in Chang et al. (2016b). O

Proof of Lemma C.1. Let B be the closed unit ball in H.

2 <€t®ft )| = sup <1117 (Z(Et@)fts—l)) U2>‘
t=1 V1,026 B t=1
= Sup 2<v17€t><v27ft l>
v1,U2€B =1

Note that for any vy and ve in H, ((v1,eiXva, f£ 1)) is a martingale difference sequence,

then by the central limit theorem for martingale difference sequence,

1 n
7n D or, e va, 1) —a N(0, Vi (v, v2))
=1
where

Vs(vi,v2) = lim *ZE@l,EO (va, f1)°

n—oon

n

= i 2 3% e 20?) (e £207)

t=1
1
= lim — ;@1, E(er ® eo)vi o2, E(fily ® fil1)v2)

N

IE(e: @ o) | [E(fL1 ® fi24)]

for all v1,v2 € B. Since () is a functional white noise and (f{) is stationary, Vg(vy,v9)
is uniformly bounded (for vi,v2 € B) by a constant. Therefore, the family of random
operators (1/y/n Y1 (:®f7 1)) is stochastically pointwise bounded. By a random Banach-
Steinhaus theorem due to Velasco and Villena (1995), stochastic pointwise boundedness

implies stochastic equicontinuity. Therefore we have that

n
Z & ® f21)| = 0p(Vn).
Similarly, we have that
n
Z e ® fity)| = sup Z<v1,8t><vz,ft |-
=1 v1,U2€B =1
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By Lemma 3.1 and the remarks that follows, we have
1 ¢ !
oo e e ) o | G W (r)dcon, W),
t=1 0

The limiting distribution is a normal mixture, which is stochastically bounded. Once again

this stochastic pointwise boundedness implies stochastic equicontinuity. That is,

= Op(n).

2 5t®ft 1)

O
Proof of Theorem C.2. See Theorem 2, Lemma 3 and Theorem 4 in Hu et al. (2016). O

Proof of Theorem 3.4. We first prove consistency. Write
121\ — A= (A\ﬁN — AﬁN> + (A\ﬁg — Aﬁs) .

First, note that

n 0
A\ﬁN—AﬁN = (Z(€t®ft 1 ) (Z Uk@vk )
t=1

k=1
Since
Me® fin)| < | De® f21) Z e ® fi¥1)] = Op(n), (23)
t=1 t=1 =1
and that
A =0,(n7?) (24)
forall k =1,...,¢, we have that
HA\ﬁN — AﬁNH = Op(n_l). (25)
Next, we first show that
DA @0) — Y A (k@) = op(1). (26)
k=0+1 k=0+1
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Write

2 nj\lzl(f)k ® f)k) — Z )\Izl(vk ® 'Uk)
k=(+1 k=l+1
_ Z (nﬁ\,;l - A,;l) (D @ D) + Z A (0 ® ) — (v ® ).
k=l+1 k=l+1
m 2
Since} 1"y 1 Tk = 2vV2(Am—Am+1) "t = 202X, by assumption we have that W
871(/@" — 0 as n — o0. This implies that
M=o <n1/4 log~1/4 n) . (27)

For large enough k, we have that n_lj\k > \/2 a.s., since if otherwise, then ‘n‘lj\k — /\k) >

)‘—; infinitely often with positive probability, and by (27) we have that with positive proba-

bility,

1/4

lim sup n'/? log_l/2 n <sup n~ D\ — )\kD > lim sup nl/4 log™/*n = oo.

n—o0 k>/¢ n—o0

Now, for m large enough,

m
A o AT Y (0 ®61)| = ma ‘X*l—xl‘

SUPg~ ‘n_lj\k - )\kz)

< =
n~ I\, Am

2supgsy ‘nflj\k - /\k’
A2

m

<

By Lemma C.2 and (27) it follows that the above term is o0,(1). Also,

m m
D N @@t —ue@u)| < >y A0 ® (B — vr) + (B — o) © vi
k=0+1 k=0+1
m
<20 Y0 1ok — v (28)
k=t+1
. m
< 2/\;11 HFSS — ESSH 2 Tk-

k=0+1

By Lemma C.2 and the assumption of this theorem, we have that the above term is o,(1).
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This completes the proof of (26).

Now write
A\ﬁg — Aﬁg =F + F— A(ﬁs — ﬁg)
where
1 [ S S
F = - <Z(5t®ft 1)) ( Z nA, (O ® ) Z AL (vk®vk)>
t=1 k=¢+1 k=0+1
and

= % (i(a@ft_l)) ( i Akl(vk®vk)>.
t=1

k=0+1

By (23) and (26), we have that |F;| = 0,(1). Note that

= % (Zn:(&@ff_l)) IIg ( i /\lzl(vk@)vk))
t=1

k=0+1

and that

D A | = Ant (29)

k=0+1

by Lemma C.1 and (27), we have that |Fy| = op(1).

Next, write

Allg — Allg = A(Ilg — ITg) + (Allg — Allg) + A(Ilg — IIg).
Note that HA(ﬁS — HS)H = o0p(1). With a similar argument as in (28), we have that

m

2 ’l}k®1}k (’Uk®’f)k)]” = Op(1>.

A~ Tig)| = )
k=(+

Let A = Allg. Since A is compact, A* is compact. Then HA* — A* in norm. To see this,
write II = II,,, and notice that if instead HE/T* — A* -+ 0, then there exists € > 0 such that

> ¢. For

for any n, we may find z,, € H such that |z, = 1 and that H( m(n) — 1)A*z,,

. Now since A*

any n’ > n, we have that H(Hm ) — 1) Az,

> |,
is compact, there exists some subsequence z,,, of z,, such that A*azni converges in norm to
some z € H. Then we have that H(Hm(n) — 1)xH > ¢ for all n. However, this is impossible

— 0. This then implies

since m(n) — o as n — o. Therefore, we have that Hﬂﬁ* — A*
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that Hﬁﬂ— EH — 0. That is, |Allg — Allg| — 0. Now we have Hﬁﬁg - Aﬁg” = op(1),
and consistency of A follows immediately.

To obtain the asymptotic distribution of ﬁ, note that

A-A= (Zn]etcaft_l) (i vk®vk>

t=1

For any v € Hp = Hy, write

n(A\—Z)UZGl-l-Rl-FRQ-FRg,

where
1 & m ~
= < Z €t®ft—1> (Z Uk®vk)> [y,
i3 k=1
1 & d .
Ry = (n 2 £t ®ft—1) (Z ! (g ®vk)> (Ily — IIy)v,
t=1 k=1
Ry = <Z et ® ft—1> (ﬁs —1lg) ( Z nj\gl(ﬁk @f;k)> (M — ﬁN)v,
t=1 k=¢+1
and

R3 = (i £t ®ft1> s < i n; (0 ®@k)) (Iy — ).

t=1 k=0+1

By (23) and Theorem 3.3, we have that |R;| = O,(n™!). By (23), (26), (27) and Theorem
3.3, we have that |Ra| = o0,(n**log™"*n). Note that (37, & ® fr_1)1s = S0 & ®
f5, by (26), (27), Lemma C.1 and Theorem 3.3, we have that | R3] = o,(n~"*log="/*n).
Now again by (23), (26) and Theorem 3.3 we have that

G = (;i&@ftl) (Zn k Uk@”k))

—4 <L (dW ® Wp)(r ) <ZA vk®vk>

= <J1(dW®WP)(r)) <J,1(WP®WP)(7")CZT>+U’

0 0

where So W, ® W),)(r)dr is viewed as an operator restricted on Hp = Hy, and © denote the

inverse of the operator on Hp. This then completes the proof for the asymptotic distribution
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of A on Hy.
For any v ¢ Hpy, we have that

(A—A)v = Gy + Ry + Rs + Rg
where

1 n
— Y ¢ ®fts_ )( AL (0@ )
Ry = (i i £t ®ft1> <i nAy ! (o ®@k)> (s — TIg)v,

Sl-

k=1

and

m m

R6:vlﬁ(¢1ﬁ§5t®fts‘l> ( PIECTRCT-TAREDY W”’f@”’“))”

k=0+1 k=0+1
By (23), (24), (26), (27), and Theorem 3.3, we have that |Ry| = 0,(n=%/*log™"*n). Simi-
larly, | Rs| = 0,(n**log="*n). By Lemma C.1 and (26), we have that | Rg| = 0,(n""/?).
Note that Z; = (£:® f 1) (Xhpiq Ay ok ® ur)) v = {f0 (e A vk @) v) et

is a martingale difference sequence with respect to F; = o(g; : @ < t). Since fi_; is

independent of ¢;, we have that

2
]E(Zt@)Zt) =E<fts_1,< Z )\ ’L)k@’Uk> > E(5t®5t)

k=0+1

<( Z e vk®vk>U7E(ff_1®ft 1 (Z AL Uk@”k) >E
k=0+1 k=0+1
<( Z AL vk®vk> < i (vk®vk)> U>E

k=0+1 k=0+1

— ( i )\,;1<vk,v>2> z

k=0+1

By the central limit theorem for real-valued martingale difference sequence, we have that

for any x € H,

W Na, Z) —a N(0, (z, Bz)) (30)
m t=1
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where s2,(z) = YL, 1 A '(og, v)%. Next, we show that the sequence Zp = . f Dy Zy

is tight. Let II; be the orthogonal projection onto the space spanned by the ﬁrst n eigen-

) <

functions of the variance operator . Since that for any € > 0, P (H(l ) ~n
El|(1-112)Z, |
M and that

2
EH(I —H%) ~n

( i A7 (o ®Uk)> fts_l,v> (1 —1>)ey

k=0(+1

n m 2
- ns21(v)ZE << Z )\kl(Uk®Uk)> ftsl,v> H(l_HE)EtHQ

k=0+1

m 2
= S E-TaEC (D) At @) |
Sm(v) k=0+1

=tr ((1-1I)%) -0

as n — oo, we have
limsup sup P (H(l — H,EL) 7l >

n—o0 n

e) ~ 0.

This implies that (Z) is tight, so the central limit theorem for the real valued martin-
gale difference sequence as in (30) implies a central limit limit theorem for the H-valued

martingale difference sequence Z;:

Vn 1 .
0 v 2O

This completes the proof for the asymptotic distribution of A outside Hy. O

Proof of Corollary 3.5. Since

(A~ Aytiy| < A - Wy + |A@ - DiLy| <

it then suffices to show that
Hﬁ - EH = op(nV2m1/2), (31)

Write

-] = [fiy + fis — 1y 1] < [floy —Tiw] + [~ 1] Simce i —11v] -
( 1Y, it suffices to show that Hﬁs - HSH = op(n"?m!/2).

et (vy) be the eigenfunctions associated with the nonzero eigenvalues (X:) of T'sg such
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that X; > Ay
spanned by (v7) for k = 1,...,m — £. Write

> ..., and define IIg to be the orthogonal projection on the subspace of H

Hﬁs ~ | < |fig — M| + |Ts — I (32)

For the first term on the right hand side of (32), it follows from Hu, Park and Qian (2016)
that under Assumption 3.2,

ﬁgH = 0p(n"?m'/?). To analyze the second term in
(32), we note that IIg and Il are orthogonal projections onto the subspaces spanned by the
leading eigenvalues of ﬁgf ﬁg and of HSfHS, respectively. It follows from Lemma 3.3 that
Hglly = Op(n~1) and MyIlg = Op(n~1), then we may derive that ﬁgfﬁs =Tgs+0,(n71)
uniformly in n, and consequently, maxi <x<m—r¢ H@“k — @f” = Op(n_l), from which it follows
that |[Is — IIg| = Op(n~'m). Now it follows that Hﬁg — HSH = 0p(n""?m1/2), which shows
that (A — A)Iy = oy(n""2m!/2).

Also,
(4 - A)lLgv] < | AT - MTLgv| + |A@ - 1)Tgo]
< ATt = i ol + 4] 2T = 1)e
= op(n~2m?) + O(|(1 = I)w]),
and the proof is complete. O

Proof of Theorem 3.7. Write
n n +
B—Bg= (Z [515 +(A- 1)ft]X1] ® fts—1> (Z i ®fts—1> :
t=1 t=1

Note that e; + (A — 1)]@1\_71 =c+ (A— 1)(ﬁN —MN)fi1 =&+ Op(nfl/Q).

_ (
-

by (27) and (29), the above term is o,(n =%/ log~"/*n). Therefore, for any v € Hy, (B —

1=

[575 +(A- 1)J§]X1] ®J?t51> <§ t—1 ®ft 1) ) Uy

o0+ (A= DY | @ ff_1> <Z i@ ft5_1> ) 1y~ Tiy)
t=1

i t®ftS_1> < i /\El(vk @Uk)> + op(1)> (HN — ﬁN) ,

k=0+1

1

NNgE

3\H =

o1



Bg)v = op(n1h).

Similarly, for any v ¢ Hy, we may show that

vn <§—§5)v= vn (iiet@fil) ( i )\kl(vk®vk)>v+op(1).
t=1 k

$m(v) Sm (v) it

It then follows from the proof of Theorem 3.4 that T\/(ﬁv) (E — ES) v —4 N(0,) for any
v ¢ HN.

Consistency of A follows from the above results easily. O

Proof of Theorem 3.8. We first prove the consistency of I p. Consider the operator
B =1+ (EAILf) ® (Ugfi-1)) (EMsfi-1) @ Mg fi-1))"

where T denotes the inverse on Hg. It is obvious that B has kernel H L, and has an
invariant subspace Hp that corresponds to the eigenvalue 1. Since EA(ILf;) ® (g fi—1) =
EAILf) ® (Hgfi_1), we see that IIHr = Hr n H is an invariant subspace of B. Note
that B is in fact essentially an operator restricted on the finite dimensional subspace H, in
view of the comments in Section 2.3, the projection with range Hr n H and kernel space
Hp @ H*' is given by

X
B—HW%@—HWﬂy=@AmM®ﬁ%ﬁﬁ)@ﬁmﬁﬂ®mﬁﬂo

— g + (EA(Hth) ® (Hsft—1)> <EA(HSft) ®© (HSft_1)>+.

The projection with range Hp and kernel space (Hy n H) ® H L is therefore Iy = Iy —
(EA(T N f) ® (Lg fi—1))(EA(ILg fi—1) ® (ILg f;—1)) T since the two projections should add up
to IL.

The sample analog of the latter projection is obviously I p. We next show that ﬁp —
113 = 0p(1). First write

Z(Afts ®]§S_1) =G+ R+ Re
t=1

S|

where

Gy =

S

D Us(AfF ® f2)Ly,
t=1
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Ry = (I — Ig) (; PO ft_1>> I,

=1
and
1 & ~
Ry =1l (n ;(Aft ® ft—l)) (ILs — IIg).
It follows from Lemma C.1 and (31) that R; and Ry are both 0,(1) terms. Note that G; =
EA(Igf:) ® (ILg fi—1) + 0p(1), we therefore have that %Z?:I(Afts ® fﬁl) =EA(IIgf1) ®
(ILg fr—1) + 0p(1). Next, write

1 n
52 AFNQfP ) =Gy + Rs+ Ry

where
1 n
- Z ey ® fl)s,
nt:1
1 ¢ ~
Rs = (My — Iy) (nZ (Afi ® fia )HS,
t=1
and

3\*—‘

P ® fie 1) (s — ILg)

ol
-

By Lemma C.1 and (31) we have that Rz = Op(n~!),Ry = op(n"'m'?), and Gy =
EA(My f;) ® (g fi—1) + Op(n~2). Tt then follows that %Z?:l(Aft ®ft_1) =EA(IIgf;) ®
(g fi—1) + Op(n=172).

Since

ig
2 Et ®ft 1) HS—HS (;Z 5t ®ft )y — HN)>ﬁ

3\*—‘

A(g fr) ®@ (g fi—1) = (HgAllg — ILg)Elg(f—1 ® fr—1)g + o(1)

= (ESAHS - ﬂs) Z k(v ® vg) + 0o(1),
k=t+1

by (27) and (29) we have that EA(Ilgf;) ® (g fi_1) = o(n"*log=/4n). Tt then follows
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that

Ip =Ty + (EA(Hth) ® (g fe-1) + Op(”_1/2)> (EA(Hsft) ® (g fe-1) + Op(1)>

=II% + o0p(1).

Following similar steps, we can show that A-B= op(1). By consistency of ﬁ’ we have
that B — A = o(1). Since II% is the eigen-projection of B corresponding to the eigenvalue
1, and IIp is the eigen-projection of A corresponding to the eigenvalue 1, and that B — A,
we have that II3, — IIp = o0p(1). Since Ip — II% = 0p(1), we have that Ip—TIlp = op(1).

Since I1p + IIp =ﬁp+ﬁT = 1, we have ﬁT—HT = op(1). O

Proof of Lemma 3.10. Write
Af, —Af, =G+ R+ Ry

where

Ry = (A D)y fy,
Ry = (A= A)(Ilg — T1g) f,

and
G = @X__;{ﬂ]Sfﬁ'

By Lemma 3.1 and (25) we have that | Ry | = O,(n~1/?). Since | Ra|| < Hﬁ - ZH Hﬁg - HSH I full;
by Lemma 3.1 and the consistency of A, we have that | Ry| = o,(n~"2).
Following the proof of Theorem 3.4, we have that G = G+ o/p(nfl/ 2) where

G = % (Z(a@ffl)) ( > Ai‘l(vi@vi)) fa-
t=1 k=¢+1

Therefore, it suffices to show that

\/n/mG =4 N(0, ). (33)

We follow Mas (2007) for this proof. Specifically, we follow its convention to show that

\/E(Z(gt@)fﬁ_l)) ( Z )\Izl(vk@)vk)) ffﬂ —4 N(0,%).

t=1 k=¢+1
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This is obviously equivalent to (33) if A is estimated using data only up to time n — 1. For
convenience, we write Q5 = D1 )\Igl(vk ® ). Since A restricted on Hy is the identity

operator, we have that

f7=Ts(Afie1 +e) =Ts(A(FN, + £71)) + &) = HeATlsf | + ¢}

This implies that ( fts ) has a functional autoregressive representation with autoregressive
operator IIgAIlg. For convenience, let Ag = IIgAIlg. Since |[As| < ||A[, the first order
difference equation ¢ = Aggr_1 + sts has a unique stationary solution. Since g; = ftS is
a solution, it is the only solution. This implies that we may view (f°) as a stationary

functional autoregressive process by itself.

Now write
(Z(cft@ft 1> ( Z )\ (v; ® v;) ) f7§+1
t=1 k=£+1
Z <ft 1 QQ fn+1>8t
:Z<Q2 f1s n+1>5t
t=1
=N+ 2+ 7
t=1
where
Zt+ = <Q§rf£9—1>fﬁr>€t,
<Q2 ft 17 AS ntl= t >5t7
Zy = <Q;fts—1= (AS)"H*tff,Ost,
and

s s s t.S
for = enp1 + Asen + -+ (Ag)" e

Minor modifications of the proof of Lemma 5.7 in Mas (2007) shows that (Z;") and
(Z;) are H-valued martingale difference sequences with respect to F;. Following the proof
of Lemma 5.8 in Mas (2007), it is easy to show that E(Z," ® ZJ) = 0 for t < s, and
E(Z ®Z") =E{Q7 [, fﬁr>2 .. Note that Q3 is the inverse of E(f7 ; ® f ;) restricted
on Hg, we may follow the proof of Lemma 5.8 in Mas (2007) to obtain that

E(Z®@Z") = (m—€—tr (QF (As)" "' Dgg(A%)" 1)) £
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Since [tr (QF (As)" " T'gs(A%)"**1)| is bounded by a constant under the assumption in
the theorem, we have that E{Q3 f7 1, ft5j+>2 = O(nm). Then since ((Z,,z)) is a martingale

difference sequence for any x € H, by the central limit theorem we have that

1
nm

SN2 ) —a N(O, (o, Ta)).
t=1

We may follow the proof of Lemma 5.9 in Mas (2007) to show that ﬁ > Z, is a tight
sequence. This then implies that ﬁ Y12 =4 N(0,%). One may follow Lemma 5.10 in
Mas (2007) to show that ﬁ > ZP =, 0 and that ﬁ Y1 Z; —p 0. The conclusion

then follows immediately. O

Proof of Theorem 3.11. In view of Lemma 3.10, it suffices to show that \/n/m(Af, —
Afyn) = 0p(1). Notice that

Afn— Afo = (ATly foy — ATy fy) + (ALls fo — Alls f) = Alls fo — Alls o,
it then suffices to show that W(Zﬁsfn — Allgf,) = op(1). Since
Allg f — Alls f, = (Allg — Allg) f + (A — A)(Ils — ILg) fo,
and that |4 — A| < |A], by Lemma 3.1, it suffices to show that
|(ATls — Alls) fu| = (A = A)£7] = 0p(n"2m?2).

Write
(A-A)fS =AM - fS + A —1)f5.

In the proof of Corollary 3.5, we have shown that
tion 3.2. Also,

‘ﬁ - EH = 0,(n~2m1/2) under Assump-

DT Cons £ yom

k=m+1

E|@- 155" =E

2 0 ¢] a0
- IE( Z <vk,fn>2> = Z M = o(n"'m)

k=m+1 k=m+1

by Assumption 3.4, which implies that (I — 1) (7] = 0p(n~1/2m!?). This then completes
the proof. 0
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