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University and Indiana University. Bo Hu would like to thank NSF China for financial support (Project ID:
72003004).

†Email: yoosoon@indiana.edu
‡Email: bohu@nsd.pku.edu.cn
§Email: joon@indiana.edu

1



1 Introduction

The rapid development of economic theories and practices calls for econometric methods

that can be used to analyze complicated objects such as curves and functions in addition to

scalars and vectors. At the same time, developments in data generation, collection, storage

and communication technologies give researchers access to data that have rich structures.

These developments lay the groundwork for the emergence of functional data analysis in

recent years, both in cross-sectional and time series settings. In functional data analysis,

data are studied in the original functional form, while in traditional methods any functional

observation has to be converted to a few statistics intended to summarize the information.

For example, in studying distributional dynamics, one may use functional methods to keep

track of the density function process, while the traditional treatments only look at the

processes of a few moments and/or quantiles. Since the density function contains all the

information about a distribution, functional methods provide opportunities to study full dy-

namics of the underlying time varying distributions, in addition to traditional methods that

focus only on some particular aspects of the distributions. Functional methods therefore

have advantages in studying complicated objects such as global temperature (Chang et al.,

2020), electricity prices (Chen and Li, 2016), bond yield curves (Hays et al., 2012), distri-

bution of financial returns (Hu et al., 2016; Park and Qian, 2012) and earning distribution

dynamics (Chang et al., 2016a).

There is a collection of theories available for functional data analysis. Among many

excellent others, Ramsey and Silverman (2005) give an introduction to the theories and

tools in functional data analysis. Horväth and Kokoszka (2012) provide a comprehensive

summary of the techniques in functional data analysis up to the time of publication. Ferraty

and Vieu (2006) introduce nonparametric methods in functional data analysis. Bosq (2000)

is devoted to the theory of functional time series, particularly functional autoregression in a

stationary setting. All of these theories are developed under the assumption of independent

and identical distributions or stationarity. However, many interesting functional time series

in real-life applications have nonstationary features. For example, over the past 30 years,

US income inequality has been growing markedly. This implies that there is likely to be

nonstationarity in the density process of the US income distributions. It then calls for

a framework that is able to accommodate functional time series with strong persistence.

Chang et al. (2016b) give some results on functional time series with unit roots and provide

a test for the number of unit roots in a functional time series. However, no formal theory has

been developed for functional time series with unit roots under the autoregression setting.

In this paper, we study functional autoregression (FAR) with unit roots in infinite di-
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mensional Hilbert spaces. We provide a functional Beveridge-Nelson decomposition that

identifies the permanent and transitory components of the functional time series generated

by the FAR model. These two components represent the persistent stochastic trends and

stationary cyclical movements of the functional time series, respectively. We relate our

decomposition to the error correction model when the underlying function space is finite

dimensional. The attractor space and the cointegrating space are given by our permanent

subspace and stationary subspace, respectively. We propose estimators for the functional

autoregressive operator, both without and with the unit root restriction. Our estimators

are consistent under very mild regularity conditions, and converge at different rates on dif-

ferent subspaces. In the nonstationary subspace, our estimators converge at rate n, and

the limit distribution is nonstandard, given as a function of Brownian motions. Elsewhere,

our estimators converge at the parametric
?
n-rate or at a rate slower than

?
n, depending

on the subspaces in which the convergence is considered, and the limit distributions are

Gaussian. We also provide consistent estimators for the permanent-transitory decomposi-

tion. In addition, our framework can be used to make forecasts. The one-step predictor

based on our FAR estimator is asymptotically normal with a convergence rate slower than
?
n. We also extend our framework to incorporate the situation in which the transitory

component has a non-zero drift, the data are estimated with error, and/or the functional

time series is Markovian of higher order. We give conditions under which the asymptotic

theory continues to hold in these extensions.

We apply our method to study the dynamics of the term structure of the US government

bond yields. We model the time series of the forward rate curves by a functional autore-

gressive model and find that there are two dimensional unit roots in the dynamics. We

decompose the forward rate curve process into its permanent and transitory components.

We identify two permanent structural shocks, namely the permanent spread shock and the

permanent level shock, and one transitory shock in the forward rate curve dynamics. The

three shocks have at-impact effects to the forward rate curve in the forms of level change,

slope change, and curvature change. We relate these three structural shocks to monetary

and fiscal policy shocks, and find that the permanent spread shock and the transitory shock

are related to monetary policy shocks, and the permanent level shock and the transitory

shock are related to fiscal policy shocks. We get the impulse response surfaces of the yield

curve to monetary and policy shocks. We find that the overall long term effect of the mon-

etary policy shocks is significant at very short maturities, while the overall long term effect

of fiscal policy shocks is significant at all maturities.

The rest of the paper is organized as follows. In Section 2 we introduce the model and

the functional Beveridge-Nelson decomposition. In Section 3 we show how we may estimate
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the model and make prediction with the model, and develop asymptotic theories for our

estimator and predictor. In Section 4 we extend our baseline model to include the case in

which the stationary component has a non-zero drift, the functional time series is estimated,

and/or the process is autoregressive of higher order. In Section 5 we apply our method to

study the term structure of the US government bond yields. In Section 6 we present the

simulation results. Section 7 concludes.

A word on exposition and notation. Our methodology and asymptotics rely heavily on

a basic theory of Hilbert space, which is cited frequently throughout the paper without any

specific reference. All standard notations for various notions and operations in Hilbert space

are also used in the paper without any explicit definitions. The inner product and norm

in our Hilbert space H are denoted as x¨, ¨y and } ¨ }, respectively, and the tensor product

is defined by “b”. The superscript “˚” is used for the adjoint of an operator on H or the

dual spaces of H and its subspaces. The identity and null operator are written simply as

“1” and “0”. For the presentation of our estimators and their asymptotics, it would be very

convenient to introduce a pseudo-inverse of a linear operator defined effectively on a proper

subspace of H. For a linear transformation T defined on a proper subspace V of H, we

define a pseudo-inverse T` of T , whenever it is well defined, to be the linear transformation

such that T` is the inverse of T on V , and T`v “ 0 for all v P V K, where V K denotes the

orthogonal complement of V in H. If there is no possibility of confusion, we will simply call

T` the inverse of T on V , or even more briefly, the inverse on V .

2 Model and Background

2.1 The Model

In the paper, we let pftq be a functional time series, which is regarded as a sequence of

random functions taking values in a separable Hilbert space H. Formally, we may interpret

ft as an H-valued random variable defined on a probability space pΩ,F ,Pq, i.e., ft : Ω Ñ H,

for each t “ 1, 2, . . .. Throughout, we let H be given by L2pRq, which is the Hilbert

space of all square integrable real-valued functions on R, and define xu, vy “
ş

uprqvprqdr

and }v} “
a

xv, vy “ p
ş

|v|2prqdrq1{2 to be the inner product and the norm defined in H,

respectively. The Hilbert space L2pRq of square integrable functions on R has been used

to deal with functional data in economic and financial applications. For example, Kneip

and Utikal (2001) model the density functions in L2pRq and Kargin and Onatski (2008)

analyze the Eurodollar futures rate curves in L2pRq with common support r0, 1s. Hu et al.

(2016) study the dynamics of the demeaned density functions, which belongs to a subspace

of L2pRq consisting of all functions integrated to zero with common support given by a
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compact subset of R.
We suppose that the dynamics of the functional time series is given by the first-order

functional autoregressive model (FAR). To be specific, we let pftq be generated as

ft “ Aft´1 ` εt, (1)

where A is a bounded linear operator on H and pεtq is a functional white noise whose precise

meaning will be defined later. The operator norm is also denoted by }¨}, and therefore, we

have }A} “ supvPH }Av} { }v}. Since A is bounded, there exists a constant K such that

}Av} ď K }v} for all v P H.

The Hilbert space H is separable and admits a countable orthonormal basis. Therefore,

H-valued random variables may be viewed as the infinite dimensional generalizations of

random vectors. Just as an operator on a finite dimensional vector space has a matrix

representation, the autoregressive operator A may be thought of as an infinite dimensional

matrix with respect to any given orthonormal basis of H. In this way, the FAR may be

conceptually regarded as an infinite dimensional generalization of the vector autoregression

(VAR), which has been extensively used in time series econometrics. Indeed, FAR and VAR

share many features. For example, just as any VAR(p) has a VAR(1) representation, any

FAR(p) can be written in the FAR(1) form. This implies that the first-order Markovian

assumption employed in (1) is not restrictive in any essential way. However, the introduction

of infinite dimensionality does create technical difficulties. As we shall see, one problem is

the lack of functional error correction representations for a very important class of functional

time series with unit roots. Another issue is the so-called ill-posed inverse problem.

We first introduce some basic notions related to H-valued random variables. For an

H-valued random variable f with E }f} ă 8, we define its mean Ef by the element in

H such that for any v P H we have xv,Efy “ Exv, fy.1 Moreover, for any mean-zero H-

valued random variables f and g such that E }f}
2

ă 8 and E }g}
2

ă 8, we define their

covariance operator Epf b gq by the operator on H such that for any u and v in H, we have

xu,Epf b gqvy “ Exu, fyxv, gy. Naturally, we call Epf b fq the variance operator of f for

any mean-zero H-valued random variable f such that E }f}
2

ă 8. Using an orthonormal

basis pvkq of H, we may also define Ef and Epf b gq more explicitly as

Ef “

8
ÿ

k“1

`

Exvk, fy
˘

vk and Epf b gq “

8
ÿ

i“1

8
ÿ

j“1

`

Exvi, fyxvj , gy
˘

pvi b vjq.

1Note that Ex¨, fy is a bounded linear functional onH, and therefore, Ef exists by the Riesz representation
theorem.
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An H-valued white noise pεtq is a functional time series such that Eεt “ 0 for all t, Epεt b

εtq “ Σ for all t and Epεt b εsq “ 0 for all t “ s.

If }Ar} ă 1 for some integer r ě 1, the stochastic difference equation (1) has a stationary

solution. This is shown in Bosq (2000). Stationary functional autoregressive processes have

been studied by Bosq (2000) in the general setting, and by Hu et al. (2016) in a more specific

setting of distributional processes with demeaned densities estimated from cross-sectional

or intra-period observations.

In this paper, we consider the functional autoregressive model (1) in the presence of

unit roots. Such a model is necessary to analyze the functional time series with strong

persistence. Many functional time series we deal with in economic and financial applications

appear to have unit roots. For instance, Chang et al. (2016b) find unit roots in the process

of the density functions for the monthly cross-sectional earnings distributions in the United

States, and for the intra-month S&P 500 high-frequency return distributions.

Subsequently, we denote by λpAq the spectrum of A, i.e., the set of all complex numbers

λ such that λ ´ A is not invertible on H. Note that, if H is finite dimensional, λpAq is

the set of all eigenvalues of A. However, when H is infinite dimensional, λpAq is in general

larger than the set of all eigenvalues of A. We assume the following throughout the paper.

Assumption 2.1. We assume that

(a) A is compact,

(b) 1 P λpAq, and

(c) pεtq is independent and identically distributed with mean zero and covariance operator

Σ, is independent of f0, and E }εt}
4

ă 8.

A compact operator A on H is an operator that maps the closed unit ball in H to a set

whose closure is compact. It is well known that any linear operator on H is compact if and

only if it can be approximated (in operator norm) by a sequence of finite rank linear opera-

tors. Part (a) of the above assumption is therefore required for a general infinite dimensional

operator A to be consistently estimable by finite rank linear estimators.2 In addition, it

admits a singular value decomposition of A, which provides interesting interpretations of

the dynamics in the functional process as in Hu et al. (2016). Part (b) introduces unit roots

in the process pftq. Part (c) is quite standard. The assumption of pεtq being independent

and identically distributed with E }εt}
4

ă 8 is made for simplicity, and we may readily

2One may potentially allow for consistently estimable non-compact operators. For example, one may set
A to be determined by a finite dimensional parameter. Or one may use a sequence of non-linear operators
to approximate A. However, the former approach greatly restricts the space that A lies in and the latter
approach introduces non-linearity and therefore technical difficulties in inference. In view of these drawbacks,
we shall stick with the compactness assumption for the autoregressive operator A.
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allow pεtq to be a general martingale difference sequence with suptě1 E
`

}εt}
2`ϵ

ˇ

ˇFt´1

˘

ă 8

a.s. for some ϵ ą 0 without affecting our subsequent results.

Our functional autoregressive model may be used to study the dynamics of different

characteristics of a functional time series. To be specific, for any v P H, we define xv, fty to

be the v-characteristic of ft, i.e., the characteristic of ft generated by v. For example, if ft

is the density function of a distribution and v is the k-th order power function defined by

vpxq “ xk, the v-characteristic of ft is the k-th moment of the distribution. Now for any

v P H, we may consider the process of the v-characteristic given as

xv, fty “ xv,Aft´1y ` xv, εty “ xA˚v, ft´1y ` εtpvq,

where pεtpvqq is a scalar white noise process. We may view pA˚vqpxq as the response of xv, fty

to an impulse to ft´1 given by a Dirac-δ function with a spike at x, where the superscript
˚ denotes the adjoint. Similarly, A˚iv may be viewed as the response function of xv, fty to

impulses to ft´i.

2.2 Functional Beveridge-Nelson Decomposition

It is very useful to obtain the Beveridge-Nelson decomposition of a functional time series

pftq generated by an FAR(1) as in (1). To present the functional Beveridge-Nelson decom-

position more effectively, we first introduce some notation. In our subsequent discussion, we

use the subscripts or superscripts “P” and “T” to denote curves, functions and operators

related to the permanent and transitory components of pftq, respectively. We let ΓP and ΓT

be two non-intersecting Cauchy contours on the complex plane such that 1 lies in the inner

domain of ΓP and λpAqzt1u lies in the inner domain of ΓT . Such a separation of elements

in λpAq is guaranteed, since 1 cannot be a limit point of λpAq by the compactness of A. We

define two operators on H by

ΠP “
1

2πi

¿

ΓP

pλ ´ Aq´1dλ

and

ΠT “
1

2πi

¿

ΓT

pλ ´ Aq´1dλ

where the contour integral is defined as the Stieltjes integral and the convergence is in the

operator norm. A standard argument in complex analysis shows that the definitions of ΠP

and ΠT are independent of the choices of ΓP and ΓT . Finally, we denote the images of ΠP
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and ΠT respectively by HP and HT .

Theorem 2.1. Let Assumption 2.1 hold. Then we have

(a) H “ HP ‘ HT ,

(b) HP and HT are invariant under A, and

(c) HP is finite dimensional.

Part (a) of the above theorem implies that ΠP `ΠT “ 1, and we may uniquely decompose

ft “ fP
t ` fT

t , (2)

where

fP
t “ ΠP ft and fT

t “ ΠT ft,

and similarly, εt “ εPt ` εTt with εPt “ ΠP εt and εTt “ ΠT εt, for t “ 1, 2, . . .. Note that here

and elsewhere in this paper, we denote the identity operators on H and its subspaces by 1.

Part (b) implies that AfP
t P HP and AfT

t P HT , and therefore, we may easily deduce that

fP
t “ AP f

P
t´1 ` εPt (3)

and

fT
t “ AT f

T
t´1 ` εTt (4)

for t “ 1, 2, . . ., where AP and AT denote the restrictions of A on HP and HT , respectively.

Part (c) means that pfP
t q is finite dimensional. Figure 1 gives a graphical presentation of

our decomposition, where each subspace is represented by a one-dimensional line.

Let HP be ℓ-dimensional, and AP be the linear transformation on HP . It follows that

AP ´1 becomes nilpotent of degree d, i.e., d is the smallest integer such that pAP ´1qd “ 0,

for some 1 ď d ď ℓ. This is well known. See, e.g., Theorem 2 in Section 58 of Halmos (1974).

Furthermore, the degree of nilpotency completely characterizes the order of integration for

pfP
t q.

Lemma 2.2. AP ´ 1 is nilpotent of degree d if and only if pfP
t q is I(d).

Although processes of higher integrated orders may be useful, time series integrated of

order one seems to be most relevant in economic applications. Therefore, we assume that

AP ´ 1 is nilpotent of degree 1, i.e., AP “ 1, in which case pfP
t q becomes a random walk.

Moreover, we let }Ar
T } ă 1 for some r ě 1, so that pfT

t q is stationary.

Assumption 2.2. AP “ 1 and }Ar
T } ă 1 for some integer r ě 1.
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Figure 1: Decomposition of Functional Time Series

HT

HP

0

ft

fT
t

fP
t

ΠP

ΠT

Notes: This figure illustrates the decomposition of a functional time series pftq into its permanent compo-
nent pfP

t q and transitory component pfT
t q. The permanent subspace HP and transitory subspace HT are

represented by one-dimensional lines.

Under Assumptions 2.1 and 2.2, pftq becomes an I(1) process with ℓ unit roots. In

particular, (3) reduces to

fP
t “ fP

t´1 ` εPt (5)

for t “ 1, 2, . . ., and (4) defines a stationary functional autoregressive process pfT
t q. Conse-

quently, we have the following decomposition theorem.

Theorem 2.3. Let Assumptions 2.1 and 2.2 hold. Then the decomposition introduced in

(2) becomes the functional Beveridge-Nelson decomposition, with pfP
t q and pfT

t q representing

the permanent and transitory components of pftq, whose dynamics are given by (5) and (4)

respectively.

It is also useful to introduce the decomposition of the dual space H˚ of H corresponding

to our decomposition of H “ HP ‘ HT . As is well known, H is its own dual space, i.e.,

H “ H˚ by the Riesz representation theorem. We let

H˚ “ H˚
P ‘ H˚

T

with

H˚
P “ HK

T and H˚
T “ HK

P ,

where HK
P and HK

T are the orthogonal complements of HP and HT , respectively.
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For v P H˚
P , we may easily deduce that

xv, fty “ xv, fP
t y “ xv, fP

t´1y ` xv, εPt y “ xv, ft´1y ` xv, εty.

This implies that pxv, ftyq is a random walk. On the other hand, for v P H˚
T , we have

xv, fty “ xv, fT
t y,

and therefore, pxv, ftyq is a stationary process. In sum, the coordinate process pxv, ftyq

becomes a random walk or a stationary process, depending on whether v P H˚
P or v P H˚

T ,

respectively.

Let A˚ “ A˚
P ` A˚

T , where A˚
P and A˚

T are A˚ restricted on H˚
P and H˚

T , respectively.

Lemma 2.4. Let Assumptions 2.1 and 2.2 hold. Then A˚
P “ 1.

Therefore, we have A˚
P “ 1 as well as AP “ 1.

Subsequently, we denote HP and H˚
T by HN and HS , which will be referred to as the

nonstationary subspace and the stationary subspace of H, respectively. Under Assumptions

2.1 and 2.2, we have

H “ HN ‘ HS , (6)

and for v P HN and v P HS , pxv, ftyq is nonstationary and stationary, respectively. Unlike

the decomposition H “ HP ‘ HT in Theorem 2.1, the decomposition in (6) is orthogonal.

We define ΠN and ΠS to be the orthogonal projections on the nonstationary and stationary

subspaces HN and HS of H, and let

fN
t “ ΠNft and fS

t “ ΠSft (7)

for t “ 1, 2, . . .. Our subsequent theoretical development will rely on the decompositions in

(6) and (7). See Figure 2 for the graphical presentation of the decompositions of H and its

dual space H˚ we introduce. The dotted lines represent the projections ΠN and ΠS , and

the dashed lines represent the projections ΠP and ΠT .

2.3 Finite Dimensional Case

To see how our model and framework are related to the existing literature on VAR with

unit roots and cointegration, let H “ Rm and pftq be a usual m-dimensional time series.

In this case, the autoregressive operator A reduces to an m ˆ m matrix. If we assume that
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Figure 2: Decomposed Subspaces

H˚
T ” HS

HT

HP ” HN
H˚

P

ftfN
t

fS
t0

Notes: This figure illustrates the decomposition of the Hilbert space H into the permanent subspace HP

and the transitory space HT , and the decomposition of the dual space H˚
“ H into the stationary space H˚

T

and the random walk dual space H˚
P . It also presents the decomposition of the functional time series pftq

into its nonstationary component pfN
t q and stationary component pfS

t q. The projections on the stationary
and nonstationary subspaces are represented by dotted lines, and the projections on the permanent and
transitory subspaces are represented by dashed lines.

there are ℓ unit roots for 0 ă ℓ ă m, we may let

A “ 1 ` αβ1

and write

∆ft “ αβ1ft´1 ` εt, (8)

where α and β, which are identified only up to their ranges, are m ˆ pm ´ ℓq matrices of

parameters such that the pm´ ℓq ˆ pm´ ℓq matrix α1β is nonsingular. Under Assumptions

2.1 and 2.2, we may write the FAR in (1) as the ECM in (8), where pftq is Ip1q, and pβ1ftq

is stationary with each column of β representing a cointegrating relationship in pftq. In our

subsequent discussion, we denote by αK and βK the m ˆ ℓ matrices such that α1
Kα “ 0 and

β1
Kβ “ 0, where αK and βK are again identified only up to their ranges.

For pftq generated by the ECM in (8), we have

HP “ RpβKq and HT “ Rpαq,

since AβK “ βK, ARpαq Ă Rpαq, and Rpαq ‘ RpβKq “ Rm. Furthermore, it follows that

H˚
P “ HK

T “ RpαKq and H˚
T “ HK

P “ Rpβq,
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which implies that pα1
Kftq is a unit root process and pβ1ftq is a stationary process. We may

explicitly obtain the projections ΠP and ΠT as

ΠP “ βKpα1
KβKq´1α1

K and ΠT “ αpβ1αq´1β1,

respectively. Note that the subspace HP is defined by Granger as the attractor space, and

the subspace H˚
T is often referred to as the cointegrating space.

Recall that we also define HP and H˚
T to be the nonstationary subspace HN and the

stationary subspace HS , respectively, which decompose H “ Rp into two orthogonal sub-

spaces. The projections ΠN and ΠS on the two orthogonal subspaces HN and HS are given

by

ΠN “ βKpβ1
KβKq´1β1

K and ΠS “ βpβ1βq´1β1,

respectively.

3 Estimation, Prediction and Asymptotic Theory

3.1 Preliminaries

Functional Limit Theory For our asymptotics of FAR with unit roots, we need an

invariance principle in H.

Lemma 3.1. Let Assumptions 2.1 and 2.2 hold. If we define

W prq “
1

?
n

rnrs
ÿ

t“1

εt

for r P r0, 1s, then W Ñd W as n Ñ 8, where W is Brownian motion on H with variance

operator Σ.

For more discussions on Brownian motion in Hilbert space, the reader is referred to Kuelbs

(1973).

For pfN
t q, we write

fN
t “ fP

t ` pfT
t ´ fS

t q

for t “ 1, 2, . . ., and note that pfP
t q is a random walk driven by the innovation pεPt q, i.e.,

fP
t “ fP

t´1 ` εPt for t “ 1, 2, . . ., and that pfT
t ´ fS

t q is stationary. It follows from Lemma

3.1 that if we define

WP prq “
1

?
n

rnrs
ÿ

t“1

εPt
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for r P r0, 1s, then WP Ñd WP as n Ñ 8, where WP is a Brownian motion on HP

with variance ΣP “ ΠPΣΠ
˚
P . Therefore, if properly normalized, pfP

t q behaves like WP

in the limit. Note that ΣP is finite dimensional and of rank ℓ, which implies that WP is

degenerate and takes values only in an ℓ-dimensional subspace HP of H. On the other

hand, since fT
t “ AT f

T
t´1 ` εTt for t “ 1, 2, . . ., the variance operator of pfT

t q is given by
ř8

k“0A
k
TΣTA

˚k
T with ΣT “ ΠTΣΠ

˚
T . Since

fS
t “ ΠSf

T
t ,

the variance operator of pfS
t q is given by ΣS “ ΠS

`
ř8

k“0A
k
TΣTA

˚k
T

˘

ΠS .

Asymptotics for Sample Variance Operator Let n be the sample size, and define

the unnormalized sample variance operator pΓ of pftq by

pΓ “

n
ÿ

t“1

pft b ftq, (9)

which is decomposed as

pΓ “ n2ΓNN ` nΓNS ` nΓSN ` nΓSS , (10)

where

ΓNN “
ΠN

pΓΠN

n2
“

1

n2

n
ÿ

t“1

pfN
t b fN

t q,

ΓSS “
ΠS

pΓΠS

n
“

1

n

n
ÿ

t“1

pfS
t b fS

t q,

ΓNS “
ΠN

pΓΠS

n
“

1

n

n
ÿ

t“1

pfN
t b fS

t q,

and ΓSN “ Γ
˚

NS .

Lemma 3.2. Let Assumptions 2.1 and 2.2 hold. Then

ΓNN Ñd ΓNN “

ż 1

0
pWP b WP qprqdr,

ΓSS Ñp ΓSS “ ΠS

˜

8
ÿ

k“0

Ak
TΣTA

˚k
T

¸

ΠS

13



as n Ñ 8. Moreover,

ΓNS “ Opp1q and ΓSN “ Opp1q

for large n.

On the ℓ-dimensional nonstationary subspace HN of H, the sample variance operator of

pftq, if normalized by n´2, converges in distribution to ΓNN , which is a random operator.

On the other hand, on the stationary space HS of H, the usual sample variance operator of

pftq normalized by n´1 converges in probability to its common variance operator. In fact,

it follows from Hu et al. (2016) that

›

›ΓSS ´ ΓSS

›

› “ O
´

n´1{2 log1{2 n
¯

a.s.,

under Assumptions 2.1 and 2.2. Note that

ˆ

ΠN

n
`

ΠS
?
n

˙

pΓ

ˆ

ΠN

n
`

ΠS
?
n

˙

“
ΓNN

n2
`

ΓSS

n
` Oppn´1{2q,

which implies that, if we normalize ΠN and ΠS appropriately, the terms ΓNS and ΓSN

become negligible in the limit and do not appear in our asymptotics. The unit root and

stationary components of pftq are therefore asymptotically orthogonal. This extends the

asymptotic orthogonality of the unit root and stationary components in finite dimensional

nonstationary time series, which is shown in, e.g., Park and Phillips (1989).

Functional Principal Component Analysis Since pΓ is self-adjoint and positive semi-

definite, it has real and nonnegative eigenvalues, λ̂1 ě ¨ ¨ ¨ ě λ̂n, with the correspond-

ing eigenfunctions v̂1, . . . , v̂n, which are orthogonal. We may assume that }v̂k} “ 1 for

k “ 1, . . . , n. In fact, the eigenfunctions v̂1, . . . , v̂n are the (normalized) functional principal

components which are used widely in functional data analysis. We let pλkpΓNN q, vkpΓNN qq

be the pairs of eigenvalues and eigenfunctions of ΓNN such that λkpΓNN q’s are in descend-

ing order. Similarly, we define pλkpΓSSq, vkpΓSSqq to be the ordered pairs of eigenvalues

and eigenfunctions of ΓSS such that λkpΓSSq’s are in descending order. For expositional

convenience, we assume that the eigenvalues pλkqkąℓ are different from each other.3 For

definiteness, we assume that pvkpΓNN qq and pvkpΓSSqq are normalized and that their signs

are aligned with pv̂kq, i.e., xv̂k, vkpΓNN qy ě 0 for k “ 1, . . . , ℓ, and xv̂k`ℓ, vkpΓSSqy ě 0 for

k “ 1, 2, . . .. The following lemma follows directly from Chang et al. (2016b).

3We could potentially allow for multiplicity. However in that case the eigenfunctions could not be uniquely
identified even after normalization, which introduces expositional complications.
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Lemma 3.3. Let Assumptions 2.1 and 2.2 hold. Then

`

n´2λ̂k, v̂k
˘

Ñd pλkpΓNN q, vkpΓNN qq

as n Ñ 8 jointly for k “ 1, . . . , ℓ, and

`

n´1λ̂k`ℓ, v̂k`ℓ

˘

Ñp pλkpΓSSq, vkpΓSSqq

as n Ñ 8 for k “ 1, 2, . . ..

The eigenvalues associated with the nonstationary and stationary subspaces diverge at

different rates, and this was used by Chang et al. (2016b) to develop a consistent test for the

number of unit roots, or equivalently, the dimension of nonstationary subspace ℓ in general

functional time series with unit roots. The ℓ leading functional principal components pv̂kqℓk“1

converge in distribution to the ordered eigenfunctions
`

vkpΓNN q
˘ℓ

k“1
of the random operator

ΓNN on HN introduced in Lemma 3.2. Although
`

vkpΓNN q
˘ℓ

k“1
span HN a.s., they are not

deterministic but random functions. The rest functional principal components pv̂k`ℓq
n´ℓ
k“1

converge in probability to the ordered eigenfunctions
`

vkpΓSSq
˘n´ℓ

k“1
of the deterministic

operator ΓSS defined explicitly in Lemma 3.2. It is clear that we need normalizations

by n´2 and n´1 for the eigenvalues
`

λ̂k

˘ℓ

k“1
and

`

λ̂k`ℓ

˘n´ℓ

k“1
, respectively, by Lemma 3.2.

Throughout the paper, we let vk`ℓ “ vkpΓSSq for k “ 1, 2, . . . for notational brevity, so that

pvk`ℓq
8
k“1 spans HS . Moreover, we let pvkqℓk“1 be an arbitrary set of functions, which spans

HN . Then pvkq8
k“1 is an orthonormal basis of H such that pvkqℓk“1 spans HN and pvkq8

k“ℓ`1

spans HS .

Once pv̂kq are obtained and the number ℓ of unit roots is known, we may estimate the

projection ΠN on the nonstationary subspace HN by

pΠN “

ℓ
ÿ

k“1

pv̂k b v̂kq, (11)

and the projection ΠS on the stationary subspace HS “ HK
N by rΠS “ 1´ pΠN . As shown in

Chang et al. (2016b), we have

pΠN “ ΠN ` Oppn´1q and rΠS “ ΠS ` Oppn´1q

for large n, under Assumptions 2.1 and 2.2. As discussed, we may consistently estimate the

nonstationary space HN by the subspace of H spanned by pv̂kqℓk“1, although pv̂kqℓk“1 does

not converge to pvkqℓk“1 spanning HN a.s. or in probability.
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Let
pfN
t “ pΠNft and rfS

t “ rΠSft, (12)

and redefine ΓNN ,ΓSS ,ΓNS and ΓSN using p pfN
t , rfS

t q in place of pfN
t , fS

t q, respectively. Then

the differences between the newly defined ΓNN ,ΓSS ,ΓNS and their original versions are only

of order Oppn´1q. In particular, the newly defined ΓNN and ΓSS are asymptotically equiva-

lent to their original versions, whose asymptotics are derived in Lemma 3.2. Therefore, we

will not distinguish the new versions from the old ones.

Ill-Posed Inverse Problem We may easily see that ΓNN is invertible on HN and

Γ`
NN is well defined. However, ΓSS “ EpfS

t b fS
t q is not invertible on HS , since ΓSS “

ř8
k“ℓ`1 λkpvk b vkq with

ř8
k“ℓ`1 λk ă 8 under our condition E}fS

t }2 ă 8, which means

in particular that λk Ñ 0 as k Ñ 8, and therefore, Γ`
SS is not well defined.4 This creates

the so-called ill-posed inverse problem in estimating the autoregressive operator A, which

involves inversion of the sample variance operator of pftq. To deal with this ill-posed inverse

problem, we use the standard approach in functional data analysis, which will be explained

below.

Let mn be a sequence of numbers such that ℓ ă mn ă n and mn Ñ 8 with mn{n Ñ 0

as n Ñ 8, which we subsequently write m instead of mn for notational brevity. Moreover,

let
pft “ pΠft and pfS

t “ pΠSft (13)

for t “ 1, . . . , n, where

pΠ “

m
ÿ

k“1

pv̂k b v̂kq, and pΠS “

m
ÿ

k“ℓ`1

pv̂k b v̂kq, (14)

from which it follows immediately that

pft “ pfN
t ` pfS

t and pΠ “ pΠN ` pΠS

for t “ 1, . . . , n, where pΠN and pfN
t are defined in (11) and (12), respectively. Note that

pΠN ` pΠS ‰ 1, which is in contrast with pΠN ` rΠS “ 1, where rΠS “ 1´ pΠN as defined earlier.

To deal with the ill-posed inverse problem in estimating the autoregressive operator A,

we use p pftq in place of pftq to approximate the inverse of the sample variance operator of

4In fact, the operator ΓSS with
ř8

k“ℓ`1 λk ă 8 is said to be nuclear or trace-class.
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pftq. Note that
˜

n
ÿ

t“1

pft b ftq

¸`

“

n
ÿ

k“1

1

λ̂k

pv̂k b v̂kq,

while
˜

n
ÿ

t“1

p pft b pftq

¸`

“

m
ÿ

k“1

1

λ̂k

pv̂k b v̂kq,

which explains the reason why we use p pftq to solve the ill-posed inverse problem in the

sample variance operator of pftq.

3.2 Estimators and Their Asymptotics

Let

pA “

˜

n
ÿ

t“1

pft b ft´1q

¸ ˜

n
ÿ

t“1

p pft´1 b pft´1q

¸`

, (15)

where p pftq is defined in (13). This is the commonly used estimator for the autoregressive

operator A. Bosq (2000) and Hu et al. (2016) use the same estimator to analyze stationary

functional autoregressions.

To develop asymptotics for pA, we define a sequence pτkq for k “ ℓ ` 1, ℓ ` 2, . . . by

τℓ`1 “ 2
?
2pλℓ`1 ´ λℓ`2q´1 and τk “ 2

?
2maxtpλk´1 ´ λkq´1, pλk ´ λk`1q´1u for k ą ℓ` 1,

and introduce the following assumption.

Assumption 3.1. log n
`

řm
k“ℓ`1 τk

˘2
{
`

nλ2
m

˘

Ñ 0 as n Ñ 8.

Note that Assumption 3.1 does not put any actual restrictions on the time series pftq itself.

Since
řm

k“ℓ`1 τk is increasing in m and λm is decreasing in m, it merely controls how fast

m may grow as n Ñ 8. That is, it only imposes a restriction on how we may choose m as a

function of n. The following theorem provides asymptotics for our autoregressive operator

estimator pA. In what follows, we let

A “ ApΠ,

where pΠ is defined earlier in (14).

Theorem 3.4. Let Assumptions 2.1, 2.2 and 3.1 hold. Then

›

›

›

pA ´ A
›

›

›
Ñp 0
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as n Ñ 8. On HN , we have

n
`

pA ´ A
˘

Ñd

ˆ
ż 1

0
pdW b WP q

˙ ˆ
ż 1

0
pWP b WP q

˙`

as n Ñ 8. Moreover, for any v R HN , we have

?
n

smpvq

`

pA ´ A
˘

v Ñd Np0,Σq

as n Ñ 8, where s2mpvq “
řm

k“ℓ`1 λ
´1
k xvk, vy2, and Np0,Σq is a Gaussian random element

taking values in H with mean zero and variance operator Σ.

Our estimator pA of the autoregressive operator A in (15) is consistent. The limit behaviors of

pA are quite distinctive on HN and elsewhere. In fact, pA requires distinctive normalization

factors and yields different types of limit distributions on HN and elsewhere. On HN ,

np pA ´ Aq converges weakly in operator norm to a nonstandard distribution represented

as a function of Brownian motions. Unfortunately, as shown in Mas (2007), pA ´ A does

not converge weakly in any norm topology under any normalization. Nevertheless, we may

still consider pointwise weak convergence to establish asymptotic normality of p pA´Aqv for

v R HN . Note that the convergence rate of
`

pA´A
˘

v for v R HN depends on v. Specifically,
`

pA ´ A
˘

v converges at the usual
?
n-rate if

ř8
k“1 λ

´1
k xvk, vy2 ă 8, and converges at a rate

slower than
?
n if

ř8
k“1 λ

´1
k xvk, vy2 “ 8.

Our nonstationary asymptotics in Theorem 3.4 are coordinate-free, and do not rely on

any particular coordinate system. When H “ Rm and HN “ RpβKq as in Section 2.3,

we may present our asymptotics more explicitly using a coordinate system given by the

column vectors of a particular choice of βK, in which we represent v P HN as u P Rℓ such

that v “ βKu.
5 If such a coordinate system is used, we have

n
`

pA ´ 1
˘

βK Ñd

ˆ
ż 1

0
dWV 1

P

˙ ˆ
ż 1

0
VPV

1
P

˙´1

, (16)

where VP is an ℓ-dimensional Brownian motion defined as

WP “ βKVP with VP “ pα1
KβKq´1α1

KW.

Note that A “ A in this case, and VP is uniquely defined with any choice of αK such

5Here we assume that βK is of full column rank. As is well known, RpβKq “ RpβKT q for any nonsingular
matrix T , and therefore, βK is not identified uniquely for a given HN . Therefore, we must choose a particular
βK for which pβKq “ HN to use it as a coordinate system here.
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that RpαKq “ H˚
P . The asymptotics in (16) may be viewed as a coordinate version of our

asymptotics in Theorem 3.4. As expected, if m “ ℓ “ 1, our limit distribution reduces to a

scaled Dickey-Fuller distribution.

Theorem 3.4 shows that our estimator pA of the autoregressive operator A contains bias

terms on both the nonstationarity and stationarity subspaces, i.e., HN and HS . To analyze

the bias terms, it is necessary to introduce some technical conditions.

Assumption 3.2. We assume that

(a) pλkq is convex in k for k large enough,

(b) n´1{2m5{2 log2m Ñ 0, and

(c)
řm

i“ℓ`1

ř8
j“m`ℓ`1 λiλj{pλi ´ λjq

2 “ opmq

as n Ñ 8.

The condition in (a) is mild and is satisfied by many sequences of eigenvalues decaying at

polynomial and exponential rates. The condition in (b) holds as long as m “ Opn1{5´δq for

any δ ą 0, and m does not grow too fast as n Ñ 8. The condition in (c) is more stringent,

though not prohibitively so. For many practical applications, it appears that pλkq decays

geometrically and we may set λk “ ρk for some 0 ă ρ ă 1. In this case, we may easily

deduce that
řm

i“ℓ`1

ř8
j“m`ℓ`1 λiλj{pλi ´ λjq

2 “ Op1q.

Let HS be the subspace of H spanned by pvkqmk“ℓ`1 and define ΠS to be the orthogonal

projection on HS , and similarly, let H be the subspace of H spanned by pvkqmk“1 and define

Π to be the orthogonal projection on H. Note that HS is an m-dimensional subspace of

HS , and that H “ HN ‘ HS and Π “ ΠN ` ΠS .

Corollary 3.5. Let Assumptions 2.1, 2.2 and 3.2 hold. Then for any v P HN ,

pA ´ Aqv “ oppn´1{2m1{2q,

and, for any v R HN ,

pA ´ Aqv “ oppn´1{2m1{2q ` O p}Ap1 ´ Πqv}q

for large n.

Corollary 3.5 provides the orders of the bias terms in our autoregressive operator es-

timator pA. The bias terms become negligible as long as m Ñ 8 as n Ñ 8. Note that

p1 ´ Πqv Ñ 0 as m Ñ 8 for any v P H.

Once we obtain the autoregressive operator estimator, we may obtain the residuals by

pεt “ ft ´ pAft´1
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and estimate Σ by

pΣ “
1

n

n
ÿ

t“1

ppεt b pεtq.

The following corollary is an obvious consequence of Theorem 3.4.

Corollary 3.6. Let Assumptions 2.1, 2.2 and 3.1 hold. Then

›

›

›

pΣ ´ Σ
›

›

›
Ñp 0

as n Ñ 8.

In obtaining the estimator pA of A introduced earlier in (15), we do not impose the

restrictions implied by the presence of unit roots in pftq. In the following, we propose

another estimator rA of A with those restrictions, which is defined as

rA “ pΠ `

˜

n
ÿ

t“1

p∆ft b ft´1q

¸ ˜

n
ÿ

t“1

`

pfS
t´1 b pfS

t´1

˘

¸`

, (17)

and let

rB “ p rA ´ 1qpΠ and BS “ pA ´ 1qpΠS .

Note in particular that rBv “ v and BS v “ 0 for any v P pHN . We may easily deduce that

Theorem 3.7. Let Assumptions 2.1, 2.2 and 3.1 hold. Then

›

›

›

rA ´ A
›

›

›
Ñp 0

as n Ñ 8. On HN , we have
›

›

›

rB ´ BS

›

›

›
“ oppn´1q

for large n. Moreover, for any v R HN , we have

?
n

smpvq

`

rB ´ BS

˘

v Ñd Np0,Σq

as n Ñ 8, where s2mpvq “
řm

k“ℓ`1 λ
´1
k xvk, vy2, and Np0,Σq is a Gaussian random element

taking values in H with mean zero and variance operator Σ.

3.3 Beveridge-Nelson Decomposition

To estimate the Beveridge-Nelson decomposition, we need consistent estimators of ΠP

and ΠT , i.e., the (non-orthogonal) projections on HP and HT along HT and HP , respec-

20



tively. We define their estimators as

pΠP “ pΠN ´

˜

n
ÿ

t“1

p∆ pfN
t b pfS

t´1q

¸ ˜

n
ÿ

t“1

p∆ pfS
t b pfS

t´1q

¸`

pΠT “ pΠS `

˜

n
ÿ

t“1

p∆ pfN
t b pfS

t´1q

¸ ˜

n
ÿ

t“1

p∆ pfS
t b pfS

t´1q

¸`

to be our estimators for ΠP and ΠT , respectively. Instead of pΠT , we may also use

rΠT “ rΠS `

˜

n
ÿ

t“1

p∆ pfN
t b pfS

t´1q

¸ ˜

n
ÿ

t“1

p∆ pfS
t b pfS

t´1q

¸`

“

˜

n
ÿ

t“1

p∆ft b pfS
t´1q

¸ ˜

n
ÿ

t“1

p∆ pfS
t b pfS

t´1q

¸`

as an estimator for ΠT . Note that pΠP ` rΠT “ 1, whereas pΠP ` pΠT ‰ 1.

Theorem 3.8. Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Then

›

›

›

pΠP ´ ΠP

›

›

›
Ñp 0 and

›

›

›

rΠT ´ ΠT

›

›

›
Ñp 0

as n Ñ 8.

Theorem 3.8 shows that the (non-orthogonal) projections ΠP and ΠT along HT and HP ,

respectively, can be consistently estimated by pΠP and rΠT in operator norm. On the other

hand,
›

›pΠT ´ ΠT

›

› Ñp 0.
6 Nevertheless, we have pΠT Ñp ΠT pointwise as shown below.

Corollary 3.9. Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Then, for any v P H,

`

pΠT ´ ΠT

˘

v Ñp 0

as n Ñ 8.

We may also easily deduce that
`

pΠT ´ rΠT

˘

v Ñp 0 for any v P H, since
`

pΠT ´ rΠT

˘

v “
`

pΠT ´ΠT

˘

v´
`

rΠT ´ΠT

˘

v and convergence in operator norm implies pointwise convergence.

The estimated Beveridge-Nelson decomposition may now be obtained using pΠP and pΠT ,

i.e., ft “ pfP
t ` pfT

t , where
pfP
t “ pΠP ft and pfT

t “ pΠT ft.

6This is because pΠT is of finite rank and it cannot converge to a non-compact operator ΠT in operator
norm.
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Clearly, we may also use rΠT in place of pΠT to define rfT
t , say, for t “ 1, . . . , n. It also follows

from Theorem 3.8 that

ΠP “ ΠN ´

´

Ep∆fN
t b fS

t´1q

¯´

Ep∆fS
t b fS

t´1q

¯`

ΠT “ ΠS `

´

Ep∆fN
t b fS

t´1q

¯´

Ep∆fS
t b fS

t´1q

¯`

“

´

Ep∆ft b fS
t´1q

¯´

Ep∆fS
t b fS

t´1q

¯`

,

which define ΠP and ΠT in terms of ΠN , ΠS and various product moments of pftq and

p∆ftq.

3.4 Forecast

Our model can be used to make forecasts. We may obtain the one-step forecast as

pfn`1 “ pAfn,

where pA is the estimated autoregressive operator defined in (15). Multiple-step forecasts

may be obtained by recursive one-step forecasts. The following results give the asymptotic

normality of the predictor. As one would see in the proof of the following lemma, in the

prediction procedure we follow Mas (2007) to compute pA using data only up to time n ´ 1

to avoid technicalities.

Assumption 3.3. We assume that

(a)
›

›

›
Γ

´1{2
SS A

›

›

›
ă 8, and

(b) supkąℓ Exvk, f
S
t y4{λ2

k ă K for some constant K.

Loosely put, condition (a) requires that A be at least as smooth as Γ
1{2
SS on HS . Condition

(b) is satisfied whenever the tail probability of xvk, f
S
t y decreases fast enough. For example,

when pfS
t q is Gaussian, condition (b) holds with K “ 3.

Lemma 3.10. Let Assumptions 2.1, 2.2, 3.1 and 3.3 hold. Then

a

n{mp pA ´ Aqfn Ñd Np0,Σq

as n Ñ 8, where Np0,Σq is a Gaussian random element taking values in the Hilbert space

H with mean zero and variance operator Σ.

Once again there is a bias term Afn ´ Afn in the result above. To get rid of the bias

term so as to obtain the confidence interval for f̂n`1, we need Assumption 3.2 as well as an
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additional assumption.

Assumption 3.4. pn{mq
ř8

k“m`1 λk Ñ 0 as n Ñ 8.

For geometrically decaying sequence of eigenvalues λk “ ρk, we may show easily that
ř8

k“m`1 λk “ Opρmq. Therefore, we may set m such that n “ ρ´m.

Theorem 3.11. Let Assumptions 2.1, 2.2, 3.1, 3.2, 3.3 and 3.4 hold. Then

a

n{mp pA ´ Aqfn Ñd Np0,Σq

as n Ñ 8.

From Theorem 3.11 we may easily deduce that for any Gaussian pεtq, we have that

pfn`1 ´ fn`1 “ p pAn ´ Aqfn ´ εn`1 «d N
´

0,
´

1 `
m

n
Σ

¯¯

.

Consequently, for any v P H, the α-level confidence interval for the forecast of xv, fny is

”

xv, pfn`1y ´ zα{2

a

p1 ` m{nqxv,Σvy, xv, pfn`1y ` zα{2

a

p1 ` m{nqxv,Σvy

ı

(18)

where zα{2 “ Φ´1p1 ´ α{2q and Φ is the cumulative distribution function of the standard

normal distribution.

4 Term Structure of US Government Bond Yields

4.1 Preliminaries

The term structure of interest rates is one of the most important topics in finance and

macroeconomics. Since US government bonds carry almost no risk, their interest rates are

usually viewed as benchmark interest rates.

Let Ptpτq be the price of a discount bond at time t that promises to pay $1 τ years

ahead. The yield to maturity ytpτq at time t is defined as the average rate of return

of holding this bond until maturity, where τ is the time to maturity. Under continuous

compounding, Ptpτq “ expp´τytpτqq. The yield to maturity ytpτq thus can be calculated

as ytpτq “ ´ 1
τ lnPtpτq once we observe the price of the discount bond. The graph of yt as

a function of the time to maturity τ is called the yield curve at time t. The instantaneous

spot rate, denoted by rt, is the limit of ytpτq as τ approaches zero. In the continuous

compounding framework, it measures the current risk-free interest rate.
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Figure 3: Time Series of Forward Rate Curves and Its Decompositions

Notes: This figure plots the time series of the end-of-month US government bond forward rate curves from
January 1981 to December 2017 and its components. Panel (a) gives the original time series of forward
rate curves. Panel (b) and (c) plot its permanent and transitory components, respectively. Panel (d) plots
everything that is not in the first five principal components.

The ratio of change in the bond’s price at any future time t ` τ defined by ftpτq “

´P 1
tpτq{Ptpτq is called the (instantaneous) forward rate, which gives the implied (instanta-

neous) rate of return of holding the bond at time t ` τ under the no-arbitrage condition.

The graph of ft as a function of the time to maturity τ is called the forward rate curve. The

yield curve and the forward rate curve are related through ytpτq “ 1
τ

şτ
0 ftpsqds. Since the

yield curve and the forward rate curve imply each other, they contain the same informa-

tion. However, it is usually more instructive to loot at the forward rates since they reflect

expectations for future interest rates in a more direct way. In this section, we shall study

the dynamics of the forward rate curves of US government bonds.

However, the forward rate curves are not directly observable. The Treasury only issues

bonds with a limited number of maturities. Gürkaynak et al. (2007) estimate the US

Treasury bond forward rate curves using a model of the functional form ftpτq “ β0t `

β1te
´τ{γ1t`β2t

τ
γ1t

e´τ{γ1t`β3t
τ
γ2t

e´τ{γ2t , where β0t, β1t, β2t, β3t, γ1t and γ2t are the parameters

to be estimated in each period. They estimate the forward rate curves at daily frequency

from 1961 on.7 We use their estimated end-of-month forward rate curves from January

7The Federal Reserve Board maintains a web page which posts the update of the estimated forward rate
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Figure 4: Factors and Factor Spaces
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Notes: Panel (a) plots the first two principal eigenfunctions of the sample variance operator pΓ. These two
functions span HP . Panel (b) plots the first three factor loadings in the space HT . Panels (c) and (d) present
the estimated time series of the level factor and the spread factor. They are estimated as the series of the
first and the second principal scores, respectively.

1981 to December 2019. Figure 3(a) plots the time series of the forward rate curves.

There is strong nonstationarity in the forward rate curve process. In general, the trend

can be deterministic, stochastic, or a mixture of the two. However, since a deterministic

trend suggests predictability, the efficient market hypothesis implies there should be no

deterministic trend, or the deterministic trend should be very weak. In this paper, we

assume that the trend is stochastic, and use FAR(1) to model the demeaned forward rate

curve process.

The functional unit root test developed in Chang et al. (2016b) suggests two unit roots

in the demeaned forward rate curve process. Therefore we set ℓ̂ “ 2. In addition, we set

m “ 5 to obtain the best rolling out-of-sample forecast performance, in which we use the

last one-fifth of periods as the prediction periods.

It turns out that the first five principal components explain 99.98% of variations in the

data, which justifies our choice of the value of m. The first two principal components, which

correspond to the nonstationary components in the forward rate curve process, explain

99.46% of the data variation.

Panel (a) of Figure 4 presents the first two principal eigenfunctions that span the per-

manent space HP . It turns out that the first eigenfunction is very close to the constant

curves quarterly. See http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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function. Actually, }Pιv̂1} “ 0.996, where Pι is the orthogonal projection onto the space

spanned by the constant function. Following the conventional terminologies of factor anal-

ysis, we shall call the first eigenfunction the loading corresponding to the level factor of the

forward rate curves. The second principal eigenfunction is monotonically upward-sloping.

Since this component reveals information about the differences between the short rates and

the long rates, we shall call it the loading corresponding to the spread factor. The cor-

responding factors are defined as the inner products of the forward rate curves with the

two eigenfunctions, respectively. Panels (c) and (d) of Figure 4 plot the estimated level

and spread factors. The non-stationarity feature of the two factors is evident. Panel (b)

of Figure 4 gives respectively the first three transitory factor loadings. With HP and HT

estimated, we may decompose the time series of forward rate curves into its permanent and

transitory components. This decomposition is presented in Panels (b) and (c) of Figure

3. This decomposition clearly separates the non-stationary component from the stationary

component.

4.2 Identification of Shocks

To investigate the dynamics of the forward rate curves, we identify three structural

shocks that drive the forward rate curves. The three structural shocks are defined in the

subspace V spanned by the three leading functional principal components of the sample

variance operator pΓ. Denoting by Π the orthogonal projection on V , we let

εt “ Πεt

for t “ 1, . . . , n, and define the variance operator and sample variance operator of pεtq as

Σ “ Epεt b εtq and

Σ “
1

n

n
ÿ

t“1

`

εt b εt
˘

,

respectively. For the fitted residuals pε̂tq, the projected functional errors pε̂tq with ε̂t “ pΠε̂t

for t “ 1, . . . , n explain 93.3% of the total variation of pε̂tq over time, and therefore, most of

the temporal fluctuations of the latter are captured by the former. Note that the variance

operator and sample variance operator of pεtq are 3-dimensional whereas those of pεtq are

infinite dimensional.

We identify two permanent shocks and one transitory shock: By definition, a permanent

shock moves the forward rate curve everlastingly and a transitory shock shifts the forward

rate curve only temporarily. The first shock will be identified to be a permanent shock that

affects only the level of the forward rate curve in the long-run. The second shock will be
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identified to be a permanent shock that affects both the level and the spread of the curve in

the long-run. In this spirit, we shall label these two shocks as the level shock and the spread

shock, which are denoted as peLt q and peSt q, respectively. The third one will be labeled as

the transitory shock and denoted as peTt q.

To define our structural shocks more explicitly, we let pvkq3k“1 span V such that v1

and v2 span HN and v3 is in HS . Further, assuming a constant function is in HN , we

may let v1 be a constant function and v2 be orthogonal to the constant function without

loss of generality. They are consistently estimable by the three leading functional principal

components pv̂kq3k“1 of pΓ. A consistent estimate for the first basis element v1 may be

obtained by projecting a constant function onto the space spanned by v̂1 and v̂2. The

second basis element v2 may then be consistently estimated by redefining v̂2 orthogonal to

the estimated v1 using the Gram-Schmidt procedure. Needless to say, v3 is consistently

estimated directly by v̂3.

Note that Σ is an operator on V spanned by pvkq3k“1. Therefore, it may be written

as Σ “
ř3

i,j“1xvi,Σvjypvi b vjq and can be effectively represented as a 3-by-3 matrix pΣq

whose pi, jq-th element is given by xvi,Σvjy for i, j “ 1, 2, 3. Similarly, pεtq takes values in

V spanned by pvkq3k“1, and therefore, it may be written as εt “
ř3

k“1xvk, εtyvk and can be

effectively represented as a 3-dimensional vector pεtq whose k-th entry is given by xvk, εty.

It follows that

pΣq “
1

n

n
ÿ

t“1

pεtqpεtq
1.

Now we let

pΣq “ LL1,

and write

pεtq “ LQ

¨

˚

˝

eLt

eSt

eTt

˛

‹

‚

,

where L is a 3-by-3 lower triangular matrix, Q is a 3-by-3 orthogonal matrix, and peLt q, peSt q

and peTt q are three structural shocks introduced above. Subsequently, we show that Q is

uniquely defined and our structural errors are identified.

Let the pi, jq-th element of Q be pκijq for i, j “ 1, 2, 3. First, we find κ3 “ pκ13, κ23, κ33q1

satisfying }κ3} “ 1 and

Lκ3 “ c
$

%ΠT v3

,

-

for some constant c, where ΠT v3 is written as ΠT v3 “
ř3

k“1xvk,ΠT v3yvk and represented

by
v

ΠT v3
w

whose k-th entry is given by xvk,ΠT v3y. The shock peTt q has at-impact response
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in HT , and therefore, it only has a transitory effect on the forward rate curve. Second, for

κ1 “ pκ11, κ21, κ31q1, we require }κ1} “ 1, κ1
1κ3 “ 0 and

Lκ1 “

¨

˚

˝

a

0

b

˛

‹

‚

for some constants a and b. Note that the shock peLt q has at-impact response given by

av1 ` bv3. However, we have Ahv1 “ v1 for any h ě 1 and Ahv3 Ñ 0 as h Ñ 8, and

therefore, peLt q would have a long-run effect av1 implying a shift in the level of the forward

rate curve. Finally, we define κ2 “ pκ12, κ22, κ32q1 simply to satisfy }κ2} “ 1, κ1
2κ1 “ 0 and

κ1
2κ3 “ 0, so that at-impact response of the shock peSt q can be anywhere in V . It therefore

has a long-run effect, which may change both the level and slope of the forward rate curve.

Once Q is identified, we let P “ LQ, where P is a 3-by-3 matrix P with the pi, jq-th

element given by pπijq for i, j “ 1, 2, 3, and define the impulse response function

IRFiphq “ Ah
3

ÿ

j“1

πjivj “

3
ÿ

j“1

πjiA
hvj ,

where A is the autoregressive operator, h is the number of periods after the shock, and

i “ 1, 2, 3 corresponds to each of the three shocks peLt q, peSt q and peTt q, respectively. Since

the signs of each column of P is not identified, we normalize the sign of the first column of

P so that the response at impact to a positive level shock is positive, the second column

of P so that the response at impact to a positive spread shock is downward sloping, and

the third column of P so that the response at impact to a positive transitory shock has

a trough at the maturity of two to three years. We normalize the signs of the structural

shocks accordingly. For our impulse response analysis, we use the restricted version rA in

(17), instead of the unrestricted version pA in (15), as a consistent estimator for A.

The left three panels of Figure 5 plot the time series of the estimated three structural

shocks, and the right three panels of Figure 5 give the response functions of the three

structural shocks at impact. The level shock is a persistent shock that changes the forward

rates uniformly at all maturities. The term premium shock is a persistent shock that

affects the short forward rates and the long forward rates in opposite directions. A positive

transitory shock increases the very short forward rates by a large amount, and the effect

becomes negative very quickly as we increase the maturity, and it tends to die out when

the maturity is very large.
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Figure 5: Structural Forward Rate Shocks

Notes: The left three panels plot the time series of the three identified structural shocks, namely the level
shocks, the spread shocks and the transitory shocks, in the forward rate curve dynamics, respectively. The
right three panels plot the impulse response functions at impact to the level, spread, and transitory shocks
respectively with their 95% bootstrap pointwise confidence bands based on 2000 repetitions.

4.3 Empirical Results

To investigate how monetary and fiscal policies affect the term structure dynamics, we

look at the correlations between the structural forward rate shocks and the policy shocks.

We also calculate the canonical correlations between the projected policy shocks and the

three structural forward rate curve shocks altogether. The monetary policy shocks are

obtained from Miranda-Agrippino and Ricco (2021) and the fiscal policy shocks are obtained

from Romer and Romer (2010). We also consider other measures for policy shocks. See

Appendix B.2 for details.

Table 1 presents the sample correlations and their significance levels obtained from the

corresponding bootstrap distributions. We find that monetary policy shock has significant

correlations with the permanent spread shock and the transitory shock. Fiscal policy shock,
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Table 1: Correlations Between Policy Shocks and Structural Forward Rate Curve Shocks

Correlations Monetary Fiscal

Level 0.036 ´0.141*
[-0.070, 0.168] [-0.293, 0.011]

Spread 0.251** ´0.071
[0.073, 0.402] [-0.244, 0.203]

Transitory 0.115: ´0.092:

[-0.063, 0.371] [-0.326, 0.073]

Notes: This table presents the correlation coefficients between monetary and fiscal policy shocks and the
three structural forward rate curve shocks. ˚˚,˚ and : denotes significance levels of 0.05, 0.1 and 0.32,
respectively. The square brackets give the 95% bootstrap confidence intervals based on 2000 repetitions.

on the other hand, has significant correlations with the permanent level shock and the

transitory shock. The canonical correlation between monetary policy shock and the three

structural forward rate curve shocks is estimated to be 0.296 with a 95% confidence interval

r0.125, 0.504s obtained from its bootstrap distribution. The canonical correlation between

fiscal policy shock and the structural forward rate curve shocks is estimated to be 0.185

with a 95% confidence interval r0.093, 0.431s obtained from its bootstrap distribution.

We also look at the impulse responses of the forward rate curve to a monetary or fiscal

policy shock. The idea is that policy shocks may induce structural forward rate curve

shocks, at the scale of the corresponding correlations estimated above, which in turn drives

changes in the forward rate curve dynamics over the horizons. The impulse responses are

then given by linear combinations of the three impulse responses where the weights are

given by the vector of the correlations between the policy shocks and the structural forward

rate curve shocks. Panel (a) of Figure 6 presents the estimated impulse response surface

of the forward rate curve to a monetary policy shock up to 36 months after the initial

shock. Panels (b), (c) and (d) of Figure 6 plot the impulse responses at impact, three

months, and three years after the shock, respectively, with the pointwise 95% bootstrap

confidence bands. The bootstrapped impulse responses of policy shocks are calculated from

the bootstrapped impulse responses of the structural forward rate curve shocks and the

bootstrapped correlations. Similarly, Panel (a) of Figure 7 presents the estimated impulse

response surface of the forward rate curve to a fiscal policy shock up to 36 months after the

initial shock. Panels (b), (c) and (d) of Figure 7 plot the impulse responses at impact, three

months, and three years after the shock, respectively, with the pointwise 95% bootstrap

confidence bands. The effect of monetary policy shocks to the forward rate curve dynamics

is significant at very short terms. The overall long term response of the forward rate curve

to a positive monetary policy shock (a rise in unexpected federal funds rate) is estimated to
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Figure 6: Impulse Responses of Forward Rate Curves to Monetary Policy Shocks with
Bands

Notes: The left panel presents the functional impulse response surface of the forward rate curve to a positive
monetary policy shock up to 36 months after the initial impact. The right three panels present the functional
impulse responses at impact, three months, and three years after a monetary policy shock, respectively, with
the pointwise 95% bootstrap confidence bands.

be positive, but not statistically significant at the level of 0.05. The overall long term effect

of a positive fiscal policy shock (a rise in tax) on the forward rate curve is estimated to be

negative, and is statistically significant at the significance level of 0.05. By a similar exercise,

we may analyze any other feature of policy consequences regarding the term structure of

interest rates both in the short run and in the long run by investigating the functional

impulse responses of the forward rate curve to monetary and fiscal policy shocks.

5 Conclusions

We build an autoregressive model for time series of random functions taking values in

a Hilbert space with persistence. A process generated by this model admits a decomposi-

tion into a permanent component and a transitory component, representing the persistent

stochastic trend and the stationary cyclical movement in the process, respectively. We show

how to estimate the model, both without and with the unit root restriction, and how to

conduct decompositions and make predictions. The estimated autoregressive operator is

consistent under very mild conditions with different convergence rates and limit distribu-
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Figure 7: Impulse Responses of Forward Rate Curves to Fiscal Policy Shocks with Bands

Notes: The left panel presents the functional impulse response surface of the forward rate curve to a positive
fiscal policy shock up to 36 months after the initial impact. The right three panels present the functional
impulse responses at impact, three months, and three years after a positive fiscal policy shock, respectively,
with the pointwise 95% bootstrap confidence bands.

tions in different subspaces, and the predictor is asymptotically normal, with a convergence

rate slower than the usual
?
n rate. We extend our baseline model to the case in which the

transitory component has a non-zero drift term, the time series of functions is estimated

with error, and the functional process follows a general autoregressive process. We apply

our method to study the term structure of the US government bond yields. We decompose

the forward rate curve series into its permanent and transitory components, identify two

permanent structural shocks and one transitory structural shocks that drive the forward

rate curve dynamics, and find that monetary and fiscal policies are correlated with these

structural shocks. We give the impulse response surfaces of policy shocks to forward rate

curve dynamics.
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Appendix A Extensions

A.1 Model with Nonzero Drift

It is rather straightforward to extend our framework to allow for the existence of tran-

sitory component with nonzero mean in functional autoregression with unit roots. To show

how, we consider the functional autoregression

ft “ ν ` Aft´1 ` εt (19)

in place of (1), where ν P HT and A satisfies Assumptions 2.1 and 2.2. Note that ν

is assumed to be in HT , and therefore, it introduces a drift term only in the transitory

component pfT
t q of pftq. As is well known, the presence of a non-zero drift term in the

permanent component pfP
t q of pftq would generate a linear time trend in pftq. We may

rewrite the functional autoregressive model in (19) as

ft ´ µ “ Apft´1 ´ µq ` εt

where µ “ EfT
t “ p1 ´ AT q´1ν is in HT .

To estimate the autoregressive operator A in (19), we need to first demean the time

series pftq, where the sample mean of the time series is given by

f̄ “
1

n

n
ÿ

t“1

ft.

Subsequently, we denote the demeaned time series of pftq by fµ
t “ ft ´ f̄ , and redefine the

operator pΓ by

pΓ “

n
ÿ

t“1

pfµ
t b fµ

t q,

and redefine λ̂i and v̂i as the ordered eigenvalues and eigenfunctions of the newly defined

pΓ.

Due to Corollary 3.2 in Bosq (2000), we have

›

›

›

›

›

1

n

n
ÿ

t“1

fT
t ´ EfT

t

›

›

›

›

›

“ Opn´1{2 log1{2 nq a.s.,

for large n, and consequently, on HT , all our sample statistics redefined by pfµ
t q yield the

same asymptotics as those defined for pftq. Therefore, the use of pfµ
t q gets rid of the non-

zero mean in pftq without affecting any asymptotics in HT . On the contrary, however,
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demeaning pfµ
t q does affect asymptotics in HP . More precisely, our previous asymptotics

involving functions of WP are now replaced by functions of

Wµ
P prq “ WP prq ´

ż 1

0
WP prqdr,

i.e., the demeaned Brownian motion on HP . The interested reader is referred to Section 4

of Chang et al. (2016b) for more details.

It is straightforward to establish the following lemma, which is analogous to Lemma 3.2.

Lemma A.1. Let Assumptions 2.1 and 2.2 hold. Then

ΓNN Ñd

ż 1

0
pWµ

P b Wµ
P qprqdr

ΓSS Ñp ΠS

˜

8
ÿ

k“0

Ak
TΣTA

˚k
T

¸

ΠS

as n Ñ 8. Moreover, we have

ΓNS “ Γ
˚

SN “ Opp1q

for large n.

Lemma C.2 continues to hold for the functional autoregression (19). Moreover, Theorem

3.3 holds with ΓNN redefined as ΓNN “
ş1
0pWµ

P b Wµ
P qprqdr, and Lemma C.1 holds with

pftq replaced by the pfµ
t q. The following theorem shows that the demeaning procedure does

not affect the asymptotic properties of our FAR estimator and predictor. The predictor of

course should be modified as

f̂n`1 “ f̄ ` pAfµ
n

to reflect the required demeaning procedure.

Theorem A.2. Let the assumptions in Theorem 3.4 hold. Then

›

›

›

pA ´ A
›

›

›
Ñp 0

and
›

›

›

rA ´ A
›

›

›
Ñp 0

as n Ñ 8. If in addition the assumptions in Theorem 3.11 hold, then

a

n{m
´

pf̂n`1 ´ µq ´ Apfn ´ µq

¯

Ñd Np0,Σq
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as n Ñ 8.

In sum, when the stationary component is not mean-zero and a demeaning procedure is

required, the asymptotic results developed for the estimation and prediction of mean-zero

functional autoregression continue to hold essentially without any additional assumptions.

A.2 Regression with Estimated Functional Time Series

In virtually all practical applications, we expect that pftq is not directly observable

and has to be estimated from either cross-sectional or high-frequency observations. In this

case, we may analyze our functional autoregressive model using the estimated functional

time series pf̂tq. It is also possible to allow for the presence of drift term in the stationary

component of pftq, in which case we may use pf̂µ
t q,

f̂µ
t “ f̂t ´

1

n

n
ÿ

t“1

f̂t

in place of pf̂tq.

We denote the estimation error of ft by ∆t “ f̂t´ft. In order to preserve our asymptotic

results as in Section 3, we need to control the magnitude of p∆tq. We therefore introduce

the following assumption.

Assumption A.1. suptě1 }∆t} “ Opp1{
?
nq.

Under Assumption A.1, }∆t} becomes negligible uniformly in t “ 1, 2, . . ., and all our

asymptotic results based on pftq continue to hold also for pf̂tq. The use of estimated func-

tions, in place of the true functions, therefore has no bearing on our asymptotics. This

is well expected from Chang et al. (2016b). The condition required here is not absolutely

necessary and can be relaxed if we introduce some additional assumptions. However, it is

already not stringent and expected to hold as long as the number of observations we use

to obtain pf̂tq is sufficiently large compared with n, which appears to be the case for many

practical applications.

A.3 Higher Order Autoregression

In this section, we consider the functional autoregression model of order p ą 1 with unit

roots. Suppose that pftq follows an FARppq model given by

ft “ A1ft´1 ` A2ft´2 ` ¨ ¨ ¨ ` Apft´p ` εt, (20)
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where A1, A2, ¨ ¨ ¨ , Ap are compact operators on H and pεtq is a functional white noise that

satisfies (c) of Assumption 2.1.

Consider the direct sum Hp “ H ‘ ¨ ¨ ¨ ‘H equipped with the inner product defined by

xpu1, ¨ ¨ ¨ , upq, pv1, ¨ ¨ ¨ , vpqy “
řp

i“1xui, viy for all vi P H and ui P H. We may rewrite the

FARppq process in (20) as an Hp-valued FARp1q process given by

gt “ Bgt´1 ` ηt (21)

where gt “ pft, ft´1, ¨ ¨ ¨ , ft´p`1q, ηt “ pεt, 0, ¨ ¨ ¨ , 0q and

B “

»

—

—

—

—

—

—

—

–

A1 A2 ¨ ¨ ¨ Ap´1 Ap

1 0 ¨ ¨ ¨ 0 0

0 1 ¨ ¨ ¨ 0 0
...

...
...

...

0 0 ¨ ¨ ¨ 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We define the characteristic polynomial Apzq “ zp ´zp´1A1 ´¨ ¨ ¨´zAp´1 ´Ap for z P C
and introduce the following assumption.

Assumption A.2. Ap1q is not invertible, and if Apzq is not invertible, then z “ 1 or |z| ă 1.

Define

Mpzq “

»

—

—

—

—

—

—

—

–

0 ´1 0 ¨ ¨ ¨ 0 0

0 0 ´1 ¨ ¨ ¨ 0 0
...

...
...

...
...

0 0 0 ¨ ¨ ¨ 0 ´1

A0pzq A1pzq A2pzq ¨ ¨ ¨ Ap´2pzq Ap´1pzq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where A0pzq “ 1 and Aipzq “ zAi´1pzq ´ Ai for i ě 0, and define

Npzq “

»

—

—

—

—

—

—

—

–

1 z z2 ¨ ¨ ¨ zp´2 zp´1

0 1 z ¨ ¨ ¨ zp´3 zp´2

...
...

...
...

...

0 0 0 ¨ ¨ ¨ 1 z

0 0 0 ¨ ¨ ¨ 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then we have that

MpzqpzIp ´ BqNpzq “

«

1 0

0 Apzq

ff

.

36



By construction, Mpzq and Npzq are invertible for all z P C, and therefore we have

λpAq “ tz : Apzq is not invertibleu .

However, since λpAq is closed and 1 cannot be a limit point of λpAq, Assumption A.2

implies that supλpAqzt1u ă 1. Furthermore, since supλpAqzt1u “ limrÑ8 }Ar
T }

1{r, there

exists r P N such that }Ar
T } ă 1. Consequently, Assumption 2.2 holds for the model (21).

This suggests that whenever we have an FARppq model with unit roots, we may reformulate

it as an FARp1q process and therefore all theoretical results for the FAR(1) model remain

valid for the FAR(p) model.

To estimate the FAR(p) model, we may write it in the form of (21) and conduct esti-

mation based on FAR(1), or we may estimate a finite dimensional version of the FAR(p)

model given by

pftq “ pA1qpft´1q ` ¨ ¨ ¨ ` pApqpft´pq ` pεq (22)

where pftq is the m-dimensional vector whose elements are xft, vky for k “ 1, . . . ,m, and

pA1q, . . . , pApq are m ˆ m coefficient matrices. In actual estimation, we replace vk by v̂k.

Once the estimate zpAkq of pAkq is obtained, we recover the estimate xAk of Ak by xAk “
řm

i,j“1
zpAkqijpvi b vjq where zpAkqij is the pi, jq-th entry of zpAkq.

To implement the unit root restriction in the FAR(p) setting, we could first run two

auxiliary regressions

∆ft “ Θ1∆ft´1 ` Θ2∆ft´2 ` ¨ ¨ ¨ ` Θp´1∆ft´p`1 ` ut

and

ft´1 “ Ξ1∆ft´1 ` Ξ2∆ft´2 ` ¨ ¨ ¨ ` Ξp´1∆ft´p`1 ` wt

and obtain the estimates pΘk, pΞk and residuals ût and ŵt. The two regressions can be

conducted based on their finite dimensional versions as in (22). We then construct the

estimators

pΣuu “
1

n

n
ÿ

t“1

ût b ût,

pΣww “
1

n

n
ÿ

t“1

ŵt b ŵt,

pΣuw “
1

n

n
ÿ

t“1

ût b ŵt,
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and

pΣwu “
1

n

n
ÿ

t“1

ŵt b ût.

We get the m ´ ℓ largest eigenvalues κ̂1, . . . , κ̂m´ℓ and the corresponding eigenvectors

ϕ̂1, . . . , ϕ̂m´ℓ of the operator pΣ`
ww

pΣwu
pΣ`
uu

pΣuw, where
` denotes the pseudo-inverse in the

span of pv̂kq, k “ 1, . . . ,m. We construct

pΨ0 “ pΣuw

˜

m´ℓ
ÿ

k“1

ϕ̂k b ϕ̂k

¸

and

pΨk “ pΘk ´ pΨ0
pΞk,

for k “ 1, . . . , p´1. Then A1, . . . , Ap can be estimated by pA1 “ pΠ` pΨ0` pΨ1, pAk “ pΨk´ pΨk´1

for k “ 2, . . . , p ´ 1, and pAp “ ´pΨp´1.
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Appendix B Supplements to the Empirical Analysis of Term

Structure

B.1 Implementation and the Truncation Parameter

To obtain the estimator, after we get the forward rate curves, we demean the curves by

subtracting the sample mean from the time series of forward rate curves and then represent

the demeaned forward rate curve in each period with the Daubechies wavelets using 1037

basis functions. That is, each forward rate curve is represented as a 1037-dimensional

vector whose coordinates are the wavelet coefficients of the curve. We obtain the matrix

representation of the operator pΓ as a 1037-by-1037 matrix, and obtain the eigenvalues and

eigenvectors of pΓ. Note that the eigenvectors can be transformed to eigenfunctions using

the wavelet basis. With m given, we then estimate A.

To settle down the value of m, we split the sample, using the first 4/5 of the sample to

estimate the model and the last 1/5 of the sample to conduct out-of-sample prediction and

select the value of m that yields the best prediction performance. It turns out that the best

value of m is 5. This implies that we are going to include the first five principal components

in our analysis.

Panel (d) of Figure 3 gives the component of the forward rate curve process that is not

included in the first five principal components. This component is negligible, indicating

that our approximation is precise. Figure 8 plots the cumulative ratios of the ten largest

eigenvalues of the unnormalized sample variance operator pΓ to the sum of all eigenvalues

of pΓ. It is well known from the theory of principal component analysis that the ratio of an

eigenvalue to the sum of eigenvalues gives the proportion of data variance that is explained

by the corresponding principal component. Figure 8 shows that the first five principal

components explain 99.98% of variations in the data, which justifies our choice of the value

of m.

B.2 Alternative Measures of Policy Shocks

Besides the Miranda-Agrippino and Ricco (2021) monetary policy shocks, we also con-

sider the Romer and Romer (2004) monetary policy shocks as an alternative. The Romer

and Romer (2004) monetary policy shocks are constructed as the residuals from projecting

the Federal Reserves’ intended changes in the federal funds rate on the forecast of economic

growth, inflation, and unemployment. Their data are available monthly from January 1966

to December 1996. We use their data from January 1981 to December 1996 to align with

our forward rate curve data.

39



Figure 8: Cumulative Scree Plot of the Forward Rate Curves
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Notes: This figure plots the cumulative proportions of data variance that are explained by the first ten
principal components. These proportions are calculated as the cumulative ratios of the ten largest eigenvalues
of the unnormalized sample variance operator pΓ to the sum of all eigenvalues of pΓ.

The Romer and Romer (2010) fiscal policy shocks used in our empirical application are

constructed from the narrative records of tax policy actions. For each tax policy change

record, the authors determine the motivation, timing, and size of the tax change, and use

those time and size as the time and value of the shock. For our analysis, we use the combined

tax changes they provide, which include both the endogenous tax changes used to boost

growth in the near future and the exogenous changes used for other purposes. The fiscal

policy shock data are available from the first quarter of 1945 to the last quarter of 2007.

Since the fiscal policy shocks are available quarterly, we apply our first order functional

model to quarterly forward rate curves from the first quarter of 1981 to the last quarter of

2007.

Besides using the original policy shocks directly, we propose the following model zot “

zt ` εzt “ β1εηt ` εzt where zot is the original policy shocks (either monetary or fiscal), zt is

the projected policy shocks defined as the projection of the unadjusted policy shocks onto

εηt “ pεηft , εηxt q1, which consists of a collection of innovations εηft to the common factors

and innovations εηxt to idiosyncratic components of a large set of macroeconomic variables,

and εzt is the error term associated with the policy shocks. To obtain the innovations

εηt , we consider the following factor model xit “
řJ

j“1 λijη
f
jt ` ηxit where xit is the i-th

standardized macroeconomic variable at time t, t “ 1, 2, . . . T, i “ 1, 2, . . . , N , ηfjt is the

j-th common factor with loading λij , j “ 1, 2, . . . , J , and ηxit is the idiosyncratic component

specific to the i-th macroeconomic variable for i “ 1, 2, . . . , N . We assume that the J-variate

common factor ηft “ pηf1t, . . . , η
f
Jtq

1 jointly follow a J-variate VAR process and each of the N

individual idiosyncratic component tηxitu follow an AR(pi) process. We call the innovations

εηft to the VAR process tηft u the common factor innovations, and the innovations εηxt “
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Table 2: Correlations Between Policy Shocks and Structural Forward Rate Curve Shocks

Correlations Monetary Policy Shock Fiscal Policy Shock

Projected Original Projected Original

Level 0.023 ´0.010 ´0.141* ´0.141*
[-0.133, 0.168] [-0.137, 0.164] [-0.293, 0.011] [-0.293, 0.011]

Spread 0.299* 0.289* ´0.071 ´0.071
[-0.139, 0.490] [-0.135, 0.487] [-0.244, 0.203] [-0.244, 0.203]

Transitory 0.091 0.074 ´0.092: ´0.092:

[-0.132, 0.358] [-0.133, 0.353] [-0.326, 0.073] [-0.326, 0.073]

Notes: This table presents the correlation coefficients between Romer and Romer (2004) monetary policy
shocks and Romer and Romer (2010) fiscal policy shocks and the three structural forward rate curve shocks.
The results obtained using both the projected policy shocks and the original policy shocks are reported.
˚˚,˚ and : denotes significance levels of 0.05, 0.1 and 0.32, respectively. The square brackets give the 95%
bootstrap confidence intervals based on 2000 repetitions.

pεηx1t , . . . , ε
ηx
Ntq

1 to the individual AR(pi) processes ηxt “ pηx1t, . . . , η
x
Ntq the macroeconomic

innovations. For txitu, we use the set of variables in the FRED-MD/FRED-QD database

developed by McCracken and Ng (2016), which contains 127 macroeconomic variables at

monthly frequency and 236 macroeconomic variables at quarterly frequency. We include

three factors chosen by the eigenvalue ratio test, and the orders of the VAR and AR models

are determined by BIC.

There are at least two merits of using projected policy shocks rather than the original

policy shocks. First, projecting the policy shocks onto the span of the macroeconomic and

common factor innovations purges the indirect effects of policy shocks to the forward rate

curves that work through first affecting macroeconomic variables. Second, the projection

provides a way for us to interpolate and extrapolate in case we have missing values in the

original policy shocks data, although in our analysis we do not deal with data missing values.

Table 2 presents the sample correlations between the Romer and Romer (2004) monetary

policy shocks and the Romer and Romer (2010) fiscal policy shocks and the three structural

forward rate curve shocks. For the shocks, both the original version and the projected

version are used. It turns out that using the projected shocks instead of the original shocks

does not change the results in any statistically significant way. The results using these

alternative policy shocks turn out to be similar comparing to the results in Table 1 in

the main text. Fiscal policy shock has significant correlations with the permanent level

shock and the transitory shock. Monetary policy shock has significant correlations with the

permanent spread shock, although not with the transitory shocks.
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Appendix C Mathematical Proofs

The following lemma, providing the orders of the interaction terms, is useful in the proof

of asymptotics pA defined in (15).

Lemma C.1. Let Assumptions 2.1 and 2.2 hold. Then

›

›

›

›

›

n
ÿ

t“1

pεt b fS
t´1q

›

›

›

›

›

“ Opp
?
nq and

›

›

›

›

›

n
ÿ

t“1

pεt b fN
t´1q

›

›

›

›

›

“ Oppnq

for large n.

The terms in the above theorem have orders that are the same as their finite dimensional

counterparts. See, for example, Lemma 2.1 in Park and Phillips (1988).

Also, the following lemma from Hu et al. (2016) is useful.

Lemma C.2. Let Assumptions 2.1 and 2.2 hold. Then

›

›ΓSS ´ ΓSS

›

› “ O
´

n´1{2 log1{2 n
¯

a.s..

Moreover,

sup
kěℓ`1

∣∣∣n´1λ̂k ´ λk

∣∣∣ ď
›

›ΓSS ´ ΓSS

›

›

and

}v̂k ´ vk} ď τk
›

›ΓSS ´ ΓSS

›

›

for k “ ℓ ` 1, ℓ ` 2, . . . .

Proof of Theorem 2.1. We use tools from functional calculus in this proof. We refer

interested readers to Gohberg et al. (1990), in particular section I.1, I.2, II.1 and II.3, for

details.

Since A is a compact operator on a separable Hilbert space H, λpAq is at most countable

and could have only 0 as a limit point. This implies that we may separate t1u from the

other elements in λpAq by two non-intersecting Cauchy contours ΓP and ΓT specified in

Section 2.2. It follows from Lemma 2.1, Theorem 2.2 and Corollary 2.3 in Chapter 1 of

Gohberg et al. (1990) that ΠP ` ΠT “ 1, ΠPΠT “ ΠTΠP “ 0, ΠP is the projection onto

the subspace HP with kernel HT , ΠT is the projection onto the subspace HT with kernel

HP , H “ HP ‘ HT , and that the two subspaces HP and HT are invariant with respect to

A. Also, since all non-zero elements in λpAq are eigenvalues of finite type of A, we have

that HP is finite dimensional.
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Proof of Lemma 2.2. Clearly, 1´AP is nilpotent of degree d on HP if and only if 1´A˚
P

is nilpotent of degree d on H˚
P . However, 1´A˚

P is nilpotent of degree d on H˚
P if and only

if there is a basis including v, pA˚
P ´ 1qv, . . . , pA˚

P ´ 1qd´1v for H˚
P , with some v P H˚

P such

that v ‰ 0, as shown in Theorems 1 and 2 of Section 57 in Halmos (1974).

Since A˚
P ´ 1 is nilpotent of degree d, we have

pA˚
P ´ 1qd “ A˚

P pA˚
P ´ 1qd´1 ´ pA˚

P ´ 1qd´1 “ 0,

and therefore,

A

pA˚
P ´ 1qd´1v, fP

t

E

“

A

pA˚
P ´ 1qd´1v,AP f

P
t´1

E

`

A

pA˚
P ´ 1qd´1v, εPt

E

“

A

pA˚
P ´ 1qd´1v, fP

t´1

E

`

A

pA˚
P ´ 1qd´1v, εPt

E

,

which implies that
`

xpA˚
P ´ 1qd´1v, fP

t y
˘

is I(1).

For d ě 2, however, we have

A˚
P pA˚

P ´ 1qd´2 “ pA˚
P ´ 1qd´2 ` pA˚

P ´ 1qd´1,

from which it follows that

A

pA˚
P ´ 1qd´2v, fP

t

E

“

A

pA˚
P ´ 1qd´2v,AP f

P
t´1

E

`

A

pA˚
P ´ 1qd´2v, εPt

E

“

A

pA˚
P ´ 1qd´2v, fP

t´1

E

`

A

pA˚
P ´ 1qd´1v, fP

t´1

E

`

A

pA˚
P ´ 1qd´2v, εPt

E

.

This shows that
`

xpA˚
P ´ 1qd´2v, fP

t y
˘

is I(2). By the usual mathematical induction, we

may now readily show that
`

xv, fP
t y

˘

is I(d), and the proof is complete.

Proof of Lemma 3.1. It follows from Theorem 2.7 in Bosq (2000) that

1
?
n

n
ÿ

t“1

εt Ñd Np0,Σq

where Np0,Σq is an H-valued Gaussian random element with variance operator Σ. The

invariance principle then follows immediately from Corollary 1 in Kuelbs (1973).

Proof of Lemma 3.2. See Lemma 3.1 in Chang et al. (2016b).
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Proof of Theorem 3.3. See Theorem 3.3 in Chang et al. (2016b).

Proof of Lemma C.1. Let B be the closed unit ball in H.

›

›

›

›

›

n
ÿ

t“1

pεt b fS
t´1q

›

›

›

›

›

“ sup
v1,v2PB

∣∣∣∣∣
C

v1,

˜

n
ÿ

t“1

pεt b fS
t´1q

¸

v2

G∣∣∣∣∣
“ sup

v1,v2PB

∣∣∣∣∣ n
ÿ

t“1

xv1, εtyxv2, f
S
t´1y

∣∣∣∣∣ .
Note that for any v1 and v2 in H, pxv1, εtyxv2, f

S
t´1yq is a martingale difference sequence,

then by the central limit theorem for martingale difference sequence,

1
?
n

n
ÿ

t“1

xv1, εtyxv2, f
S
t´1y Ñd N p0, VSpv1, v2qq

where

VSpv1, v2q “ lim
nÑ8

1

n

n
ÿ

t“1

Exv1, εty
2xv2, f

S
t´1y2

“ lim
nÑ8

1

n

n
ÿ

t“1

`

Exv1, εty
2
˘ `

Exv2, f
S
t´1y2

˘

“ lim
nÑ8

1

n

n
ÿ

t“1

xv1,Epεt b εtqv1yxv2,EpfS
t´1 b fS

t´1qv2y

ď }Epεt b εtq}
›

›EpfS
t´1 b fS

t´1q
›

›

for all v1, v2 P B. Since pεtq is a functional white noise and pfT
t q is stationary, VSpv1, v2q

is uniformly bounded (for v1, v2 P B) by a constant. Therefore, the family of random

operators p1{
?
n

řn
t“1pεtbfS

t´1qq is stochastically pointwise bounded. By a random Banach-

Steinhaus theorem due to Velasco and Villena (1995), stochastic pointwise boundedness

implies stochastic equicontinuity. Therefore we have that

›

›

›

›

›

n
ÿ

t“1

pεt b fS
t´1q

›

›

›

›

›

“ Opp
?
nq.

Similarly, we have that

›

›

›

›

›

n
ÿ

t“1

pεt b fN
t´1q

›

›

›

›

›

“ sup
v1,v2PB

∣∣∣∣∣ n
ÿ

t“1

xv1, εtyxv2, f
N
t´1y

∣∣∣∣∣ .
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By Lemma 3.1 and the remarks that follows, we have

1

n

n
ÿ

t“1

xv1, εtyxv2, f
N
t´1y Ñd

ż 1

0
xv2,W prqydxv1,WP prqy.

The limiting distribution is a normal mixture, which is stochastically bounded. Once again

this stochastic pointwise boundedness implies stochastic equicontinuity. That is,

›

›

›

›

›

n
ÿ

t“1

pεt b fN
t´1q

›

›

›

›

›

“ Oppnq.

Proof of Theorem C.2. See Theorem 2, Lemma 3 and Theorem 4 in Hu et al. (2016).

Proof of Theorem 3.4. We first prove consistency. Write

pA ´ A “

´

pApΠN ´ ApΠN

¯

`

´

pArΠS ´ ArΠS

¯

.

First, note that

pApΠN ´ ApΠN “

˜

n
ÿ

t“1

pεt b ft´1q

¸ ˜

ℓ
ÿ

k“1

λ̂´1
k pv̂k b v̂kq

¸

.

Since
›

›

›

›

›

n
ÿ

t“1

pεt b ft´1q

›

›

›

›

›

ď

›

›

›

›

›

n
ÿ

t“1

pεt b fS
t´1q

›

›

›

›

›

`

›

›

›

›

›

n
ÿ

t“1

pεt b fN
t´1q

›

›

›

›

›

“ Oppnq, (23)

and that

λ̂´1
k “ Oppn´2q (24)

for all k “ 1, . . . , ℓ, we have that

›

›

›

pApΠN ´ ApΠN

›

›

›
“ Oppn´1q. (25)

Next, we first show that

›

›

›

›

›

m
ÿ

k“ℓ`1

nλ̂´1
k pv̂k b v̂kq ´

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

›

›

›

›

›

“ opp1q. (26)
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Write

m
ÿ

k“ℓ`1

nλ̂´1
k pv̂k b v̂kq ´

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

“

m
ÿ

k“ℓ`1

´

nλ̂´1
k ´ λ´1

k

¯

pv̂k b v̂kq `

m
ÿ

k“ℓ`1

λ´1
k

`

pv̂k b v̂kq ´ pvk b vkq
˘

.

Since
řm

k“ℓ`1 τk ě 2
?
2pλm´λm`1q´1 ě 2

?
2λ´1

m , by assumption we have that
lognp

řm
k“ℓ`1 τkq

2

nλ2
m

ě

8 logn
nλ4

m
Ñ 0 as n Ñ 8. This implies that

λ´1
m “ o

´

n1{4 log´1{4 n
¯

. (27)

For large enough k, we have that n´1λ̂k ą λk{2 a.s., since if otherwise, then
∣∣∣n´1λ̂k ´ λk

∣∣∣ ą

λk
2 infinitely often with positive probability, and by (27) we have that with positive proba-

bility,

lim sup
nÑ8

n1{2 log´1{2 n

ˆ

sup
kąℓ

∣∣∣n´1λ̂k ´ λk

∣∣∣˙ ě lim sup
nÑ8

n1{4 log´1{4 n “ 8.

Now, for m large enough,

›

›

›

›

›

m
ÿ

k“ℓ`1

pnλ̂´1
k ´ λ´1

k qpv̂k b v̂kq

›

›

›

›

›

“ max
ℓăkďm

∣∣∣nλ̂´1
k ´ λ´1

k

∣∣∣
ď

supkąℓ

∣∣∣n´1λ̂k ´ λk

∣∣∣
n´1λ̂mλm

ď

2 supkąℓ

∣∣∣n´1λ̂k ´ λk

∣∣∣
λ2
m

.

By Lemma C.2 and (27) it follows that the above term is opp1q. Also,

›

›

›

›

›

m
ÿ

k“ℓ`1

λ´1
k pv̂k b v̂k ´ vk b vkq

›

›

›

›

›

ď

m
ÿ

k“ℓ`1

λ´1
k }v̂k b pv̂k ´ vkq ` pv̂k ´ vkq b vk}

ď 2λ´1
m

m
ÿ

k“ℓ`1

}v̂k ´ vk}

ď 2λ´1
m

›

›ΓSS ´ ΣSS

›

›

m
ÿ

k“ℓ`1

τk.

(28)

By Lemma C.2 and the assumption of this theorem, we have that the above term is opp1q.
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This completes the proof of (26).

Now write

pArΠS ´ ArΠS “ F1 ` F2 ´ AprΠS ´ pΠSq.

where

F1 “
1

n

˜

n
ÿ

t“1

pεt b ft´1q

¸ ˜

m
ÿ

k“ℓ`1

nλ̂´1
k pv̂k b v̂kq ´

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

and

F2 “
1

n

˜

n
ÿ

t“1

pεt b ft´1q

¸ ˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

.

By (23) and (26), we have that }F1} “ opp1q. Note that

F2 “
1

n

˜

n
ÿ

t“1

pεt b fS
t´1q

¸

ΠS

˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

and that
›

›

›

›

›

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

›

›

›

›

›

“ λ´1
m , (29)

by Lemma C.1 and (27), we have that }F2} “ opp1q.

Next, write

ArΠS ´ ApΠS “ AprΠS ´ ΠSq ` pAΠS ´ AΠSq ` ApΠS ´ pΠSq.

Note that
›

›

›
AprΠS ´ ΠSq

›

›

›
“ opp1q. With a similar argument as in (28), we have that

›

›

›
ApΠS ´ pΠSq

›

›

›
“ }A}

›

›

›

›

›

m
ÿ

k“ℓ`1

rpvk b vkq ´ pv̂k b v̂kqs

›

›

›

›

›

“ opp1q.

Let rA “ AΠS . Since A is compact, rA˚ is compact. Then Π rA˚ Ñ rA˚ in norm. To see this,

write Π “ Πm and notice that if instead
›

›

›
Π rA˚ ´ rA˚

›

›

›
Ñ 0, then there exists ϵ ą 0 such that

for any n, we may find xn P H such that }xn} “ 1 and that
›

›

›
pΠmpnq ´ 1q rA˚xn

›

›

›
ą ϵ. For

any n1 ą n, we have that
›

›

›
pΠmpnq ´ 1q rA˚xn1

›

›

›
ě

›

›

›
pΠmpn1q ´ 1q rA˚xn1

›

›

›
ą ϵ. Now since rA˚

is compact, there exists some subsequence xni of xn such that rA˚xni converges in norm to

some x P H. Then we have that
›

›pΠmpnq ´ 1qx
›

› ą ϵ for all n. However, this is impossible

since mpnq Ñ 8 as n Ñ 8. Therefore, we have that
›

›

›
Π rA˚ ´ rA˚

›

›

›
Ñ 0. This then implies
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that
›

›

›

rAΠ ´ rA
›

›

›
Ñ 0. That is, }AΠS ´ AΠS} Ñ 0. Now we have

›

›

›

pArΠS ´ ArΠS

›

›

›
“ opp1q,

and consistency of pA follows immediately.

To obtain the asymptotic distribution of pA, note that

pA ´ A “

˜

n
ÿ

t“1

εt b ft´1

¸ ˜

m
ÿ

k“1

λ̂´1
k pv̂k b v̂kq

¸

.

For any v P HP ” HN , write

np pA ´ Aqv “ G1 ` R1 ` R2 ` R3,

where

G1 “

˜

1

n

n
ÿ

t“1

εt b ft´1

¸ ˜

m
ÿ

k“1

n2λ̂´1
k pv̂k b v̂kq

¸

pΠNv,

R1 “

˜

1

n

n
ÿ

t“1

εt b ft´1

¸ ˜

ℓ
ÿ

k“1

n2λ̂´1
k pv̂k b v̂kq

¸

pΠN ´ pΠN qv,

R2 “

˜

n
ÿ

t“1

εt b ft´1

¸

prΠS ´ ΠSq

˜

m
ÿ

k“ℓ`1

nλ̂´1
k pv̂k b v̂kq

¸

pΠN ´ pΠN qv,

and

R3 “

˜

n
ÿ

t“1

εt b ft´1

¸

ΠS

˜

m
ÿ

k“ℓ`1

nλ̂´1
k pv̂k b v̂kq

¸

pΠN ´ pΠN qv.

By (23) and Theorem 3.3, we have that }R1} “ Oppn´1q. By (23), (26), (27) and Theorem

3.3, we have that }R2} “ oppn´3{4 log´1{4 nq. Note that p
řn

t“1 εt b ft´1qΠS “
řn

t“1 εt b

fS
t´1, by (26), (27), Lemma C.1 and Theorem 3.3, we have that }R3} “ oppn´1{4 log´1{4 nq.

Now again by (23), (26) and Theorem 3.3 we have that

G1 “

˜

1

n

n
ÿ

t“1

εt b ft´1

¸ ˜

m
ÿ

k“1

n2λ̂´1
k pv̂k b v̂kq

¸

v

Ñd

ˆ
ż 1

0
pdW b WP qprq

˙

˜

ℓ
ÿ

k“1

λ´1
k pvk b vkq

¸

v

“

ˆ
ż 1

0
pdW b WP qprq

˙ ˆ
ż 1

0
pWP b WP qprqdr

˙`

v,

where
ş1
0pWp bWpqprqdr is viewed as an operator restricted on HP ” HN , and ` denote the

inverse of the operator onHP . This then completes the proof for the asymptotic distribution
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of pA on HN .

For any v R HN , we have that

p pA ´ Aqv “ G2 ` R4 ` R5 ` R6

where

G2 “
1

?
n

˜

1
?
n

n
ÿ

t“1

εt b fS
t´1

¸ ˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

v,

R4 “

˜

1

n

n
ÿ

t“1

εt b ft´1

¸ ˜

m
ÿ

k“1

nλ̂´1
k pv̂k b v̂kq

¸

pΠS ´ rΠSqv,

R5 “

˜

1

n

n
ÿ

t“1

εt b ft´1

¸

prΠS ´ ΠSq

˜

m
ÿ

k“1

nλ̂´1
k pv̂k b v̂kq

¸

rΠSv,

and

R6 “
1

?
n

˜

1
?
n

n
ÿ

t“1

εt b fS
t´1

¸ ˜

m
ÿ

k“ℓ`1

n̂λ´1
k pv̂k b v̂kq ´

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

v.

By (23), (24), (26), (27), and Theorem 3.3, we have that }R4} “ oppn´3{4 log´1{4 nq. Simi-

larly, }R5} “ oppn´3{4 log´1{4 nq. By Lemma C.1 and (26), we have that }R6} “ oppn´1{2q.

Note that Zt “ pεtbfS
t´1q

`
řm

k“ℓ`1 λ
´1
k pvk b vkq

˘

v “
@

fS
t´1,

`
řm

k“ℓ`1 λ
´1
k pvk b vkq

˘

v
D

εt

is a martingale difference sequence with respect to Ft “ σpεi : i ď tq. Since ft´1 is

independent of εt, we have that

EpZt b Ztq “ E

C

fS
t´1,

˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

v

G2

Epεt b εtq

“

C˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

v,EpfS
t´1 b fS

t´1q

˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

v

G

Σ

“

C˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

v,

˜

m
ÿ

k“ℓ`1

pvk b vkq

¸

v

G

Σ

“

˜

m
ÿ

k“ℓ`1

λ´1
k xvk, vy2

¸

Σ.

By the central limit theorem for real-valued martingale difference sequence, we have that

for any x P H,
1

smpvq
?
n

n
ÿ

t“1

xx, Zty Ñd Np0, xx,Σxyq (30)
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where s2mpxq “
řm

k“ℓ`1 λ
´1
k xvk, vy2. Next, we show that the sequence rZn “ 1

smpvq
?
n

řn
t“1 Zt

is tight. Let ΠΣ
n be the orthogonal projection onto the space spanned by the first n eigen-

functions of the variance operator Σ. Since that for any ϵ ą 0, P
´›

›

›
p1 ´ ΠΣ

n q rZn

›

›

›
ą ϵ

¯

ď

E}p1´ΠΣ
n q rZn}

2

ϵ2
and that

E
›

›

›
p1 ´ ΠΣ

n q rZn

›

›

›

2
“

1

ns2mpvq
E

¨

˝

›

›

›

›

›

n
ÿ

t“1

C˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

fS
t´1, v

G

p1 ´ ΠΣ
n qεt

›

›

›

›

›

2
˛

‚

“
1

ns2mpvq

n
ÿ

t“1

E

¨

˝

C˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

fS
t´1, v

G2
›

›p1 ´ ΠΣ
n qεt

›

›

2

˛

‚

“
1

s2mpvq
E

›

›p1 ´ ΠΣ
n qεt

›

›

2 E

C˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

fS
t´1, v

G2

“ tr
`

p1 ´ ΠΣ
n qΣ

˘

Ñ 0

as n Ñ 8, we have

lim sup
nÑ8

sup
n

P
´›

›

›
p1 ´ ΠΣ

n q rZn

›

›

›
ą ϵ

¯

“ 0.

This implies that p rZtq is tight, so the central limit theorem for the real valued martin-

gale difference sequence as in (30) implies a central limit limit theorem for the H-valued

martingale difference sequence Zt:

?
n

smpxq
G2 “

1

smpvq
?
n

n
ÿ

t“1

Zt Ñd Np0,Σq.

This completes the proof for the asymptotic distribution of pA outside HN .

Proof of Corollary 3.5. Since

›

›pA ´ AqΠN

›

› ď

›

›

›
AppΠ ´ ΠqΠN

›

›

›
` }ApΠ ´ 1qΠN} ď }A}

›

›

›

pΠ ´ Π
›

›

›
,

it then suffices to show that

›

›

›

pΠ ´ Π
›

›

›
“ oppn´1{2m1{2q. (31)

Write
›

›

›

pΠ ´ Π
›

›

›
“

›

›

›

pΠN ` pΠS ´ ΠN ´ ΠS

›

›

›
ď

›

›

›

pΠN ´ ΠN

›

›

›
`

›

›

›

pΠS ´ ΠS

›

›

›
. Since

›

›

›

pΠN ´ ΠN

›

›

›
“

Oppn´1q, it suffices to show that
›

›

›

pΠS ´ ΠS

›

›

›
“ oppn´1{2m1{2q.

Let pvSk q be the eigenfunctions associated with the nonzero eigenvalues pλ
S
k q of ΓSS such
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that λ
S
1 ě λ

S
2 ě ¨ ¨ ¨ , and define ΠS to be the orthogonal projection on the subspace of H

spanned by pvSk q for k “ 1, . . . ,m ´ ℓ. Write

›

›

›

pΠS ´ ΠS

›

›

›
ď

›

›

›

pΠS ´ ΠS

›

›

›
`

›

›ΠS ´ ΠS

›

› . (32)

For the first term on the right hand side of (32), it follows from Hu, Park and Qian (2016)

that under Assumption 3.2,
›

›

›

pΠS ´ ΠS

›

›

›
“ oppn´1{2m1{2q. To analyze the second term in

(32), we note that ΠS and ΠS are orthogonal projections onto the subspaces spanned by the

leading eigenvalues of rΠS
pΓrΠS and of ΠS

pΓΠS , respectively. It follows from Lemma 3.3 that

rΠSΠN “ Oppn´1q and ΠN
rΠS “ Oppn´1q, then we may derive that rΠS

pΓrΠS “ ΓSS`Oppn´1q

uniformly in n, and consequently, max1ďkďm´ℓ

›

›v̂ℓ`k ´ vSk
›

› “ Oppn´1q, from which it follows

that
›

›ΠS ´ ΠS

›

› “ Oppn´1mq. Now it follows that
›

›

›

pΠS ´ ΠS

›

›

›
“ oppn´1{2m1{2q, which shows

that pA ´ AqΠN “ oppn´1{2m1{2q.

Also,

›

›pA ´ AqΠSv
›

› ď

›

›

›
AppΠ ´ ΠqΠSv

›

›

›
` }ApΠ ´ 1qΠSv}

ď }A}

›

›

›

pΠ ´ Π
›

›

›
}v} ` }A} }pΠ ´ 1qv}

“ oppn´1{2m1{2q ` Op}p1 ´ Πqv}q,

and the proof is complete.

Proof of Theorem 3.7. Write

rB ´ BS “

˜

n
ÿ

t“1

”

εt ` pA ´ 1q pfN
t´1

ı

b pfS
t´1

¸ ˜

n
ÿ

t“1

pfS
t´1 b pfS

t´1

¸`

.

Note that εt ` pA ´ 1q pfN
t´1 “ εt ` pA ´ 1qppΠN ´ ΠN qft´1 “ εt ` Oppn´1{2q.

Since

˜

n
ÿ

t“1

”

εt ` pA ´ 1q pfN
t´1

ı

b pfS
t´1

¸ ˜

n
ÿ

t“1

pfS
t´1 b pfS

t´1

¸`

ΠN

“

˜

n
ÿ

t“1

”

εt ` pA ´ 1q pfN
t´1

ı

b pfS
t´1

¸ ˜

n
ÿ

t“1

pfS
t´1 b pfS

t´1

¸`
´

ΠN ´ pΠN

¯

“

˜˜

1

n

n
ÿ

t“1

εt b fS
t´1

¸ ˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

` opp1q

¸

´

ΠN ´ pΠN

¯

,

by (27) and (29), the above term is oppn´5{4 log´1{4 nq. Therefore, for any v P HN , p rB ´
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BSqv “ oppn´1q.

Similarly, for any v R HN , we may show that

?
n

smpvq

´

rB ´ BS

¯

v “

?
n

smpvq

˜

1

n

n
ÿ

t“1

εt b fS
t´1

¸ ˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

v ` opp1q.

It then follows from the proof of Theorem 3.4 that
?
n

smpvq

´

rB ´ BS

¯

v Ñd Np0,Σq for any

v R HN .

Consistency of rA follows from the above results easily.

Proof of Theorem 3.8. We first prove the consistency of pΠP . Consider the operator

B “ Π ` pE∆pΠftq b pΠSft´1qq pEpΠSft´1q b pΠSft´1qq
`

where ` denotes the inverse on HS . It is obvious that B has kernel HK, and has an

invariant subspace HP that corresponds to the eigenvalue 1. Since E∆pΠftq b pΠSft´1q “

E∆pΠfT
t q b pΠSft´1q, we see that ΠHT “ HT X H is an invariant subspace of B. Note

that B is in fact essentially an operator restricted on the finite dimensional subspace H, in

view of the comments in Section 2.3, the projection with range HT X H and kernel space

HP ‘ HK is given by

pB ´ ΠqpΠSpB ´ Πqq`ΠS “

ˆ

E∆pΠftq b pΠSft´1q

˙ˆ

E∆pΠSftq b pΠSft´1q

˙`

“ ΠS `

ˆ

E∆pΠNftq b pΠSft´1q

˙ˆ

E∆pΠSftq b pΠSft´1q

˙`

.

The projection with range HP and kernel space pHT X Hq ‘ HK is therefore Π˝
P “ ΠN ´

pE∆pΠNftq b pΠSft´1qqpE∆pΠSft´1q b pΠSft´1qq` since the two projections should add up

to Π.

The sample analog of the latter projection is obviously pΠP . We next show that pΠP ´

Π˝
P “ opp1q. First write

1

n

n
ÿ

t“1

p∆ pfS
t b pfS

t´1q “ G1 ` R1 ` R2

where

G1 “
1

n

n
ÿ

t“1

ΠSp∆fS
t b fS

t´1qΠS ,
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R1 “ ppΠS ´ ΠSq

˜

1

n

n
ÿ

t“1

p∆ft b ft´1q

¸

pΠS ,

and

R2 “ ΠS

˜

1

n

n
ÿ

t“1

p∆ft b ft´1q

¸

ppΠS ´ ΠSq.

It follows from Lemma C.1 and (31) that R1 and R2 are both opp1q terms. Note that G1 “

E∆pΠSftq b pΠSft´1q ` opp1q, we therefore have that 1
n

řn
t“1p∆ pfS

t b pfS
t´1q “ E∆pΠSftq b

pΠSft´1q ` opp1q. Next, write

1

n

n
ÿ

t“1

p∆ pfN
t b pfS

t´1q “ G2 ` R3 ` R4

where

G2 “
1

n

n
ÿ

t“1

pεNt b fS
t´1qΠS ,

R3 “ ppΠN ´ ΠN q

˜

1

n

n
ÿ

t“1

p∆ft b ft´1q

¸

pΠS ,

and

R4 “

˜

1

n

n
ÿ

t“1

pεNt b ft´1q

¸

ppΠS ´ ΠSq

“

˜

1

n

n
ÿ

t“1

pεNt b fS
t´1q

¸

ppΠS ´ ΠSq `

˜

1

n

n
ÿ

t“1

pεNt b fN
t´1qpΠN ´ pΠN q

¸

pΠS .

By Lemma C.1 and (31) we have that R3 “ Oppn´1q, R4 “ oppn´1m1{2q, and G2 “

E∆pΠNftqbpΠSft´1q`Oppn´1{2q. It then follows that 1
n

řn
t“1p∆ pfN

t b pfS
t´1q “ E∆pΠSftqb

pΠSft´1q ` Oppn´1{2q.

Since

E∆pΠSftq b pΠSft´1q “ pΠSAΠS ´ ΠSqEΠSpft´1 b ft´1qΠS ` op1q

“ pΠSAΠS ´ ΠSq

m
ÿ

k“ℓ`1

λkpvk b vkq ` op1q,

by (27) and (29) we have that E∆pΠSftq b pΠSft´1q “ opn1{4 log´1{4 nq. It then follows

53



that

pΠP “ pΠN `

ˆ

E∆pΠNftq b pΠSft´1q ` Oppn´1{2q

˙ˆ

E∆pΠSftq b pΠSft´1q ` opp1q

˙

“ Π˝
P ` opp1q.

Following similar steps, we can show that rA ´ B “ opp1q. By consistency of rA, we have

that B ´ A “ op1q. Since Π˝
P is the eigen-projection of B corresponding to the eigenvalue

1, and ΠP is the eigen-projection of A corresponding to the eigenvalue 1, and that B Ñ A,

we have that Π˝
P ´ ΠP “ opp1q. Since pΠP ´ Π˝

P “ opp1q, we have that pΠP ´ ΠP “ opp1q.

Since ΠP ` ΠT “ pΠP ` rΠT “ 1, we have rΠT ´ ΠT “ opp1q.

Proof of Lemma 3.10. Write

pAfn ´ Afn “ G ` R1 ` R2

where

R1 “ p pA ´ AqpΠNfn,

R2 “ p pA ´ AqprΠS ´ ΠSqfn,

and

G “ p pA ´ AqΠSfn.

By Lemma 3.1 and (25) we have that }R1} “ Oppn´1{2q. Since }R2} ď

›

›

›

pA ´ A
›

›

›

›

›

›

rΠS ´ ΠS

›

›

›
}fn},

by Lemma 3.1 and the consistency of Â, we have that }R2} “ oppn´1{2q.

Following the proof of Theorem 3.4, we have that G “ rG ` oppn´1{2q where

rG “
1

n

˜

n
ÿ

t“1

pεt b fS
t´1q

¸ ˜

m
ÿ

k“ℓ`1

λ´1
i pvi b viq

¸

fS
n .

Therefore, it suffices to show that

a

n{m rG Ñd Np0,Σq. (33)

We follow Mas (2007) for this proof. Specifically, we follow its convention to show that

c

1

nm

˜

n
ÿ

t“1

pεt b fS
t´1q

¸ ˜

m
ÿ

k“ℓ`1

λ´1
k pvk b vkq

¸

fS
n`1 Ñd Np0,Σq.

54



This is obviously equivalent to (33) if pA is estimated using data only up to time n ´ 1. For

convenience, we write Q`
2 “

řm
k“ℓ`1 λ

´1
k pvk b vkq. Since A restricted on HN is the identity

operator, we have that

fS
t “ ΠSpAft´1 ` εtq “ ΠSpApfN

t´1 ` fS
t´1qq ` εSt “ ΠSAΠSf

S
t´1 ` εSt .

This implies that pfS
t q has a functional autoregressive representation with autoregressive

operator ΠSAΠS . For convenience, let AS “ ΠSAΠS . Since }AS} ď }A}, the first order

difference equation gt “ ASgt´1 ` εSt has a unique stationary solution. Since gt “ fS
t is

a solution, it is the only solution. This implies that we may view pfS
t q as a stationary

functional autoregressive process by itself.

Now write

˜

n
ÿ

t“1

pεt b fS
t´1q

¸ ˜

m
ÿ

k“ℓ`1

λ´1
i pvi b viq

¸

fS
n`1

“

n
ÿ

t“1

@

fS
t´1, Q

`
2 f

S
n`1

D

εt

“

n
ÿ

t“1

@

Q`
2 f

S
t´1, f

S
n`1

D

εt

“

n
ÿ

t“1

pZ`
t ` Z0

t ` Z´
t q

where

Z`
t “

@

Q`
2 f

S
t´1, f

S
t`

D

εt,

Z0
t “

@

Q`
2 f

S
t´1, pASqn`1´tεSt

D

εt,

Z´
t “

@

Q`
2 f

S
t´1, pASqn`2´tfS

t´1

D

εt,

and

fS
t` “ εSn`1 ` ASε

S
n ` ¨ ¨ ¨ ` pASqn´tεSt`1.

Minor modifications of the proof of Lemma 5.7 in Mas (2007) shows that pZ`
t q and

pZ´
t q are H-valued martingale difference sequences with respect to Ft. Following the proof

of Lemma 5.8 in Mas (2007), it is easy to show that EpZ`
t b Z`

s q “ 0 for t ă s, and

EpZ`
t bZ`

t q “ E
@

Q`
2 f

S
t´1, f

S
t`

D2
Σ. Note that Q`

2 is the inverse of EpfS
t´1 b fS

t´1q restricted

on HS , we may follow the proof of Lemma 5.8 in Mas (2007) to obtain that

E
`

Z`
t b Z`

t

˘

“
`

m ´ ℓ ´ tr
`

Q`
2 pASqn´t`1ΓSSpA˚

Sqn´t`1
˘˘

Σ.
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Since
∣∣tr `

Q`
2 pASqn´t`1ΓSSpA˚

Sqn´t`1
˘
∣∣ is bounded by a constant under the assumption in

the theorem, we have that E
@

Q`
2 f

S
t´1, f

S
t`

D2
“ Opnmq. Then since pxZ`

t , xyq is a martingale

difference sequence for any x P H, by the central limit theorem we have that

1
?
nm

n
ÿ

t“1

xZ`
t , xy Ñd Np0, xx,Σxyq.

We may follow the proof of Lemma 5.9 in Mas (2007) to show that 1?
nm

řn
t“1 Z

`
t is a tight

sequence. This then implies that 1?
nm

řn
t“1 Z

`
t Ñd Np0,Σq. One may follow Lemma 5.10 in

Mas (2007) to show that 1?
nm

řn
t“1 Z

0
t Ñp 0 and that 1?

nm

řn
t“1 Z

´
t Ñp 0. The conclusion

then follows immediately.

Proof of Theorem 3.11. In view of Lemma 3.10, it suffices to show that
a

n{mpAfn ´

Afnq “ opp1q. Notice that

Afn ´ Afn “ pApΠNfn ´ ApΠNfnq ` pArΠSfn ´ ArΠSfnq “ ArΠSfn ´ ArΠSfn,

it then suffices to show that
a

n{mpArΠSfn ´ ArΠSfnq “ opp1q. Since

ArΠSfn ´ ArΠSfn “ pAΠS ´ AΠSqfn ` pA ´ AqprΠS ´ ΠSqfn,

and that
›

›A ´ A
›

› ď }A}, by Lemma 3.1, it suffices to show that

›

›pAΠS ´ AΠSqfn
›

› “
›

›pA ´ AqfS
n

›

› “ oppn´1{2m1{2q.

Write

pA ´ AqfS
n “ AppΠ ´ ΠqfS

n ` ApΠ ´ 1qfS
n .

In the proof of Corollary 3.5, we have shown that
›

›

›

pΠ ´ Π
›

›

›
“ oppn´1{2m1{2q under Assump-

tion 3.2. Also,

E
›

›pΠ ´ 1qfS
n

›

›

2
“ E

›

›

›

›

›

8
ÿ

k“m`1

xvk, f
S
n yvk

›

›

›

›

›

2

“ E

˜

8
ÿ

k“m`1

xvk, fny2

¸

“

8
ÿ

k“m`1

λk “ opn´1mq

by Assumption 3.4, which implies that
›

›pΠ ´ 1qfS
n

›

› “ oppn´1{2m1{2q. This then completes

the proof.

56



References

Bosq, D. (2000): Linear Processes in Function Spaces: Theory and Applications, Lecture
Notes in Statistics 149, New York: Springer.

Chang, Y., B. Hu, and J. Y. Park (2016a): “A Study of Distributional Earning Dy-
namics,” Manuscript.

Chang, Y., R. Kaufmann, C. S. Kim, J. I. Miller, S. Park, and J. Y. Park (2020):
“Evaluating Trends in Time Series of Distributions: A Spatial Fingerprint of Human
Effects on Climate,” Journal of Econometrics, 214, 274–294.

Chang, Y., C. S. Kim, and J. Y. Park (2016b): “Nonstationarity in time series of state
densities,” Journal of Econometrics, 192, 152–167.

Chen, Y. and B. Li (2016): “An Adaptive Functional Autoregressive Forecast Model to
Predict Electricity Price Curves,” Forthcoming in Journal of Business & Economic
Statistics.

Ferraty, F. and P. Vieu (2006): Nonparametric Functional Data Analysis: Theory and
Practice, Springer Series in Statistics, New York: Springer.

Gohberg, I., S. Goldberg, and M. A. Kaashoek (1990): Classes of Linear Operators,
vol. I, Basel: Birkhäuser.

Gürkaynak, R., B. Sack, and J. Wright (2007): “The U.S. Treasury Yield Curve:
1961 to the Present,” Journal of Monetary Economics, 54, 2291–2304.

Halmos, P. R. (1974): Finite Dimensional Vector Spaces, New York: Springer-Verlag.

Hays, S., H. Shen, and J. Z. Huang (2012): “Functional Dynamic Factor Models with
Application to Yield Curve Forecasting,” The Annals of Applied Statistics, 6, 870–894.
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