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Functional Data Analysis

From scalar, vector variables to functional variables

� Each observation is viewed as a realization of a random curve

� Functional data analysis

Scenarios

� Intergenerational mobility

� Asset return distributional dynamics

� Yield curve dynamics



Appl. 1: Intergenerational Mobility

Intergenerational Elasticity (IGE) Estimation:

log Yc = α+ β log Yp + ε

� Usually Y is the permanent income

� Timing of parental income also matters (early childhood vs
later childhood, Carneiro et al. 2021)

� Can we just put throw all the yearly parental income in the
regression?

log Yc = α+

20∑
t=1

βt log Ypt + ε



Appl. 1: Intergenerational Mobility

Figure: Chang et al. (2023)



Appl. 1: Intergenerational Mobility

Consider the (continuous) parental income trajectory Yp(t) as a
functional variable

log yc =

∫ 20

0
β(t)yp(t)dt+ εt

Figure: Chang el al. (2023)



Appl. 2: Asset Return Distributional Dynamics

How does distribution of asset return evolve across time?

� ARMA-class: models for conditional mean

◦ E(rt|Ft−1) = α0 + α1rt−1

� ARCH-class: models for conditional variance

◦ Var(rt|Ft−1) = α0 + α1r
2
t−1

� VaR-class: models for tail probabilities

� Issues:

◦ Model specific features of distribution
◦ Assume specific dependence structure
◦ No intrinsic guarantee of compatibility across models

� Why not look at distributions directly?

◦ View observed distribution as realization of some random
distribution

◦ Distribution → density curves ft
◦ Model: ft = T (ft−1) + εt



Appl. 2: Asset Return Distributional Dynamics

Figure: Densities and Demeaned Densities of the NYSE Stocks Monthly
Returns



Appl. 2: Asset Return Distributional Dynamics

Figure: The Response Functions and the Forecast Variance
Decompositions of the First Two Moments for the Density Process of the
NYSE Stocks Monthly Returns



Appl. 2: Asset Return Distributional Dynamics

Figure: The Response Functions and the Forecast Variance
Decompositions of the Tail Probabilities for the Density Process of the
NYSE Stocks Monthly Returns



Appl. 3: Yield Curve Dynamics

Yield curve is the plot of bond yield against bond maturity (term
structure of interest rate)

� Contains important information about financial mkt and
macroeconomy

� Changes across time

� Time series models of yield at a single maturity (e.g., AR):

◦ Ignore correlations of yields across different maturities
◦ Ignore information in shape

� Time series models of yields at multiple maturities (e.g.,
VAR/ECM):

◦ Alignment problem: bonds exists at particular maturity
◦ 1-month, 2-month, 6-month, 5-year bonds becomes 1-month,

5-month, 11-month, 4 11
12 -year bonds in the next month

� Estimate yield curve from bond yields, and model yield curve
directly



Appl. 3: Yield Curve Dynamics

Figure: Time Series of Forward Rate Curves and Its Decompositions



Appl. 3: Yield Curve Dynamics

Figure: Structural Forward Rate Shocks



Appl. 3: Yield Curve Dynamics

Correlations Monetary Fiscal

Level 0.036 −0.141*
[-0.070, 0.168] [-0.293, 0.011]

Spread 0.251** −0.071
[0.073, 0.402] [-0.244, 0.203]

Transitory 0.115† −0.092†

[-0.063, 0.371] [-0.326, 0.073]

Table: Correlations Between Policy Shocks and Structural Forward Rate
Curve Shocks



Functional Spectral Component Analysis

FSCA is widely used in functional data analysis

� analysis based on spectrum of operators of functional data

� most significant example is FPCA

� important for understanding variance/covariance in the sample

� useful (and optimal) decomposition/dimension reduction tool

◦ factor analysis
◦ functional regressions

� both independent scenario and dependent scenario

It is necessary to understand asymptotic properties of spectrum
related statistical quantities

� iid case: full result for FPCA

◦ Dauxois et al. (1982)

� non-iid case: specific problems/partial results

◦ Bosq (2000), Mas (2007), Hörmann and Kokoszka (2010), Hu
et al. (2021)



Contributions

In this work, we provide

� asymptotic distribution theory for quantities related to FSCA
in weakly dependent data setting in a unified approach

◦ eigen-elements in FPCA
◦ regularized estimators in ill-posed inverse problems
◦ singular value decomposition for non-self adjoint operators
◦ spectral decomposition for non-self adjoint operators
◦ express these quantities as functions of spectrum of

appropriate operators
◦ use functional delta method to obtain asymptotic distribution

� CLTs for the second moment quantities of weakly dependent
processes

� representations for one-dimensional projections of the above
quantities so that they can be easily implemented in practice

� a procedure to determine the truncation parameter in some
FPCA problems



Preliminaries: Hilbert-Valued Random Elements

The probability space (Ω,F ,P)

H: a real separable Hilbert space with inner product 〈·, ·〉 and
norm ‖·‖

A Borel measurable mapping ξ : Ω→ H is called an H-valued
random element

ξ ∈ Lp(H) if E ‖ξ‖p <∞

Eξ is defined as an element in H such that 〈Eξ, v〉 = E〈ξ, v〉 holds
for any v ∈ H

� Eξ exists if ξ ∈ L1(H)

� E is a linear and continuous operator



Preliminaries: Covariances

Covariance of ξ and η (assume both are mean zero) is defined by
E(ξ ⊗ η) where x⊗ y may be viewed as

� a bilinear map H ×H → R such that
(x⊗ y)(v1, v2) = 〈x, v1〉〈y, v2〉 for any v1, v2 ∈ H

� a linear map H → H such that (x⊗ y)v = 〈x, v〉y for any
v ∈ H

The tensor product H1 ⊗H2 is defined as the completion of the
vector space spanned by x⊗ y for x ∈ H1, y ∈ H2

� inner product in H1⊗H2: 〈x1⊗y1, x2⊗y2〉 = 〈x1, x2〉〈y1, y2〉
� the inner product makes H1 ⊗H2 a separable Hilbert space

� E(ξ ⊗ η) is therefore well defined

� H1 ⊗H2 can be identified with the space LHS(H1, H2) of all
Hilbert-Schmidt operators from H1 to H2



Preliminaries: Algebra of Tensors

The definition of tensor product can be extended to Banach spaces
with inner products replaced by linear functionals.

� C ⊗D is well defined for C,D as bounded linear operators
between Banach spaces

� C ⊗D can be viewed as linear maps on B1 ⊗B2

Algebraic Properties

� (x⊗ y) is linear

� (x⊗ y)(x∗, y∗) = x∗(x)y∗(y)

� (x⊗ y)(x∗) = x∗(x)y

� (x⊗ y)∗ = (y ⊗ x)

� (C ⊗D)(x⊗ y) = (Cx)⊗ (Dy)

� (C ⊗D)[(x⊗ y)⊗ (z ⊗ u)](E ⊗ F ) =
[(E∗x)⊗ (Cy)]⊗ [(F ∗z)⊗ (Du)]



Preliminaries: Spectrum

Let A ∈ L(H), the spectrum
σ(A) = {λ ∈ F : λI −A not invertible}

An eigenvalue of A is λ ∈ F such that λI −A is not one-to-one.
N (λI −A) is the eigenspace corresponding to the eigenvector λ

In spectral analysis

� Take F = C
� Consider the complexification H of H

� View (extend) operator A as operator on H
� This does not affect our results since in the end all the

spectral quantities (eigenvalues and singular values we
encounter are real)



Preliminaries: Compact and Self-Adjoint Operators

A ∈ L(H) is compact if it is the limit of a sequence of finite rank
operators

� σ(A) is at most countable, the only possible limit point is 0

� SVD: A =
∑∞

i=1 µi(ui ⊗ wi)
◦ µi are real, non-negative, can be arranged in descending order
◦ µ2

i are eigenvalues of A∗A
◦ ui are eigenvectors of A∗A, and wi are eigenvectors of AA∗

A ∈ L(H) compact is self-adjoint if A∗ = A

� We may arrange so that λ1 ≥ λ2 ≥ · · · → 0

� Spectral representation A =
∑∞

i=1 λi(vi ⊗ vi)
◦ (λ, vi) are eigen-pairs



Preliminaries: Functional Calculus

A ∈ L(H)
D: open set in C that includes σ(A)
f : holomorphic function on D
Γ: contour surrounds σ(A) in D

Can define

f(A) =
1

2πi

∮
Γ
f(z)(zI −A)−1dz

(in the Riemann-Stieltjes integral sense.) The definition of f(A) is
independent of choices of Γ

In particular

� An = 1
2πi

∮
Γ z

n(zI −A)−1dz

� Split σ(A), D such that σ1 ⊂ D1, σ2 ⊂ D2, and take
f(z) = 1D1 , the f(A) is the projection P onto the eigenspace
E(σ1) along the direction of the eigenspace E(σ2)



Functional Delta Method

Frechet derivative of f(A) : L(H)→ L(H):

f ′(A)Π =
1

2πi

∮
Γ
f(z)(zI −A)−1Π(zI −A)−1dz

Theorem 1
Let A,D, f,Γ be defined as above. Suppose that there are a
normalizing sequence rT and an estimator ÂT of A such that
rT (ÂT −A)→d Ξ. Let fT be a sequence of holomorphic functions
on D such that for some δ > 0,

sup
{z:ρ(z,σ(A))<δ}

|fT (z)− f(z)| = op(r
−1
T ),

then

rT (fT (ÂT )− f(A))→d
1

2πi

∮
Γ
f(z)(zI −A)−1Ξ(zI −A)−1dz.



Functional Delta Method

� The Cauchy formula may be applied to simplify the limit
distribution term

� This result applies to general bounded linear operators in
L(H). In many of the applications A is compact and
self-adjoint (such as in the case of FPCA), and one can utilize
the resolution of the identity to rewrite the contour integral
on the right hand side

� In many applications we only need results for the case when
fT = f for all T . Here we provide a more general result.

� Many weak convergence problems in functional setting, in
particular, problems related to FPCA, can be dealt with in this
unified approach as long as we can find the proper A and fT



I. Functional Principal Component Analysis

{Xt}: a strictly stationary sequence of H-valued random elements.
Assume EXt = 0 at the moment

FPCA based on the spectral representation of its variance

V = E(Xt ⊗Xt) =

∞∑
i=1

λi(vi ⊗ vi)

The empirical counterpart is

V̂ =
1

T

T∑
t=1

(Xt ⊗Xt) =

∞∑
i=1

λ̂i(v̂i ⊗ v̂i)

All quantities with hats are also dependent on the sample size T .
In asymptotics we let T →∞

We are interested in the asymptotic distributions of λ̂i, v̂i, and
P̂i = v̂i ⊗ v̂i



I. Functional Principal Component Analysis

Assumption 1

N (V ) = {0}, and V has no repeated eigenvalues so that we order
the eigenvalues as λ1 > λ2 > · · ·

Assumption 2√
T (V̂ − V )→d N(0,K) for some K ∈ (H ⊗H)⊗ (H ⊗H).

To obtain the asymptotic distributions of eigen-elements
corresponidng to λi, We split σ(V ) and D so that D1 contains λi
and D2 contains the rest eigenvalues. We take f = 1D1 . Then
Pi = f(V ), and λi and vi can be written as linear functions of Pi.



I. Functional Principal Component Analysis

Theorem 2
Under Assumptions 1 and 2,√

T (λ̂i − λi)→d 〈Uvi, vi〉,
√
T (v̂i − vi)→d QiUvi,

and √
T
(
P̂i − Pi

)
→d PiUQi +QiUPi

where U is an N(0,K) random element and Qi =
∑

k 6=i
1

λi−λkPk.
The convergences also hold jointly. Note that all the limit
distributions are Gaussian.

The analysis could also be applied to the PCA of the long run
variance operator of Xt.



I. Functional Principal Component Analysis

Sometimes we are interested in the orthogonal projection
ΠK =

∑K
i=1 Pi onto the eigenspace corresponding to the first K

eigenvalues. Split D into D1 ∪D2 so that D1 contains the first K
eigenvalues, and take f(z) = 1D1(z), we have

Theorem 3
Under Assumptions 1 and 2,

√
T
(

Π̂K −ΠK

)
→d

K∑
i=1

(PiUQi +QiUPi)

where U is an N(0,K) random element and
Qi =

∑
k=K+1

1
λi−λkPk.

� If we allow K to change with sample size, we have that∥∥∥Π̂K −ΠK

∥∥∥ = Op

(
1√
T

∑K
i=1

1
λi−λK+1

)



I. Functional Principal Component Analysis

We may also be interested in the inverse of V . Since V is not
invertiable, we may consider the pseudo inverse with Tikhnov
regularization: V † = (V + αI)−1 for some α 6= 0. Taking
f(z) = (z + α)−1 we have

Theorem 4
Under Assumptions 1 and 2,

√
T
(
V̂ † − V †

)
→d SUS

where U is an N(0,K) random element and S =
∑∞

i=1
1

λi+α
Pi

� If we allow α to change with sample size, we have that∥∥∥V̂ † − V †∥∥∥ = Op(
1

a2T
√
T

).



I. Functional Principal Component Analysis

Another approach is to consider the pseudo inverse on particular
subspaces: V + =

∑K
i=1 λ

−1
i (vi⊗ vi). Split D into D1 ∪D2 so that

D1 contains the first K eigenvalues, and take f(z) = 1D1(z)z−1,
we have

Theorem 5
Under Assumptions 1 and 2,

√
T
(
V̂ + − V +

)
→d

K∑
i=1

(PiUQi +QiUPi − PiUPi)

where U is an N(0,K) random element Pi = 1
λi
Pi, and

Qi =
∑

j 6=i
1

λj−λiPi.

� If we allow K to change with sample size, we have that∥∥∥V̂ + − V +
∥∥∥ = Op

(
1√
T

∑K
i=1

1
λi

∑
j 6=i

1
λi−λj

)



II. Singular Value Decomposition Analysis

Let A be a compact operator in L(H) and Â its estimator

We have singular value decompositions

A =

∞∑
i=1

µi(ui ⊗ wi), Â =

∞∑
i=1

µ̂i(ûi ⊗ ŵi)

This decomposition may be used to analyze, for example, the
magnitude of the autocovariances of {Xt} of all orders.

Assumption 3

N (A) = N (A∗) = {0}, and A has no repeated singular values so
that we order the singular values µ1 > µ2 > · · · .

Assumption 4√
T (Â−A)→d N(0,K) for some K ∈ (H ⊗H)⊗ (H ⊗H).



II. Singular Value Decomposition Analysis

To obtain asymptotics, we utilize the relationship between the
singular value decomposition of A and the eigen-decompositions of
A∗A and AA∗.

Theorem 6
Under Assumptions 3 and 4,

√
T (µ̂i − µi)→d

1

2µi
〈(A∗U + U∗A)ui, ui〉,

√
T (ûi − ui)→d Qui(A

∗U + U∗A)ui,

and √
T (ŵi − wi)→d Qwi(AU∗ + UA∗)wi

where U is an N(0,K) random element, Qui =
∑

k 6=i
uk⊗uk
µ2i−µ2k

, and

Qwi =
∑

k 6=i
wk⊗wk
µ2i−µ2k

. The convergences also hold jointly. Note that

all the limit distributions are Gaussian.



III. Spectral Decomposition Analysis

In multi-dimensional or high-dimensional setting

� properties of the series in different subspaces are different

� these subspaces are characterized by the generalized
eigenspaces of some operator

� e.g., Beveridge-Nelson decomposition

Let A be a compact operator in L(H) and Â its estimator

Assumption 5

N (A) = {0}, and A has eigenvalues (without repeatition)
λ1, λ2, . . . with algebraic multiplicity m1,m2, . . . .



III. Spectral Decomposition Analysis

Estimate the subspace corresponding to the first K eigenvalues by
K⊕
i=1

N
(

(λiI − Â)mi
)
,

The corresponding (possibly non-orthogonal) projection

P̂ =
1

2πi

∮
Γ

1D1(z)(zI − Â)−1dz

Theorem 7
Under Assumptions 5 and 4,
√
T (P̂ − P )→d

1

2πi

∮
Γ

1D1(z)(zI −A)−1U(zI −A)−1dz

where U is an N(0,K) random element. Note that the limit
distribution is Gaussian.



Weak Dependence Concepts

Let Fnm = σ(Xt,m ≤ t ≤ n). The sequence {Xt} is called

1. α-mixing if
α(k) = supn supA∈Fn−∞,B∈F∞n+k

|P(A ∩B)− P(A)P(B)| → 0

as k →∞
2. φ-mixing if
φ(k) = supn supA∈Fn−∞,B∈F∞n+k,P(A)>0 |P(B|A)− P(B)| → 0

as k →∞
3. Lp-m-approximable if Xt = f(εt, εt−1, · · · ) for some

measurable f and iid {εt}, and for each t there is an

independent copy {ε(t)
i } of {εi} such that X

(m)
t defined by

X
(m)
t = f(εt, εt−1, · · · , εt−m+1, ε

(t)
t−m, ε

(t)
t−m−1, · · · ) satisfies∑∞

m=1

(
E
∥∥∥Xt −X(t)

t

∥∥∥p)1/p
<∞

To establish CLT, other weak dependence concepts for H-valued
random elements may also be utilized



Central Limit Theorem for Sample Variance

Assumption 6

Suppose that one of the following conditions hold.

1. {Xt} is an α-mixing strictly stationary sequence such that
E ‖Xt‖4+2δ <∞, and its α-mixing coefficients αk satisfies∑∞

k=1 α
δ

2+δ

k <∞.

2. {Xt} is a φ-mixing strictly stationary sequence such that
E ‖Xt‖4 <∞, and its φ-mixing coefficients φ(k) satisfies∑∞

k=1 φ
1
2
k <∞.

3. {Xt} is a L4-m-approximable sequence.

In the case when {Xt} is not mean zero, we estimate V by

V̂ =
1

T

T∑
t=1

[(
Xt −XT

)
⊗
(
Xt −XT

)]
.

where XT = 1
T

∑T
t=1Xt.



Central Limit Theorem for Sample Variance

Theorem 8
Under Assumption 6,

√
T (V̂ − V )→d N

(
0,

∞∑
h=−∞

κ(h)

)
where κ : Z→ (H ⊗H)⊗ (H ⊗H) is defined by

κ(h) =E[(Xh − EXh)⊗ (Xh − EXh)⊗ (X0 − EX0)⊗ (X0 − EX0)]

− [E((Xh − EXh)⊗ (Xh − EXh))]⊗ [E((X0 − EX0)⊗ (X0 − EX0))] .

Note that κ(h) could be viewed as the autocovariance function of
the H ⊗H-valued process {Xt ⊗Xt}.



Estimation of the Long Run Variance

To conduct statistical inferences using the above result, we need to
estimate the long run variance operator

∑∞
h=−∞ κ(h). The

autocovariance operator could be estimated by

κ̂(h) =
1

T

T∑
t=h+1

[((
Xt −XT

)
⊗
(
Xt −XT

)
− 1

T

T∑
s=1

[(
Xs −XT

)
⊗
(
Xs −XT

)])

⊗

((
Xt−h −XT

)
⊗
(
Xt−h −XT

)
− 1

T

T∑
s=1

[(
Xs −XT

)
⊗
(
Xs −XT

)])]

for 0 ≤ h ≤ T − 1, and κ̂(h) = κ̂(−h)∗ for −(T − 1) ≤ h < 0.

We then estimate the long run variance by

L̂RV (Xt ⊗Xt) =
∑

|h|≤(T−1)

w(bTh)κ̂(h)

where w is a suitable window function and bT is the bandwidth
parameter.



Estimation of the Long Run Variance

Assumption 7

1. Xt ∈ L8(H) and the fourth order cumulant Q(r, s, t) of the
process {Xt ⊗Xt} is absolutely summable.

2. w : R→ R+ is an even, bounded, square integrable function
such that w(0) = 1 and that for every b and T we have
b
∑
|h|<T w(bh) ≤ C(bT )1/2−ε for some ε > 0

3.
∑∞
−∞ |h|

q ‖κ(h)‖ <∞ for some q > 0.

4. There exists positive integer r ≥ q such that
limz→0

1−w(z)
|z|r <∞ and is nonzero.

5. bT → 0, bTT →∞, and 0 < limT→∞ b
1+2q
T T <∞.

Theorem 9
Under Assumptions 6 and 7, we have

L̂RV (Xt ⊗Xt)→p

∞∑
h=−∞

κ(h).



Representation

Sometimes it is useful to project the functional objects onto lower
dimensional spaces (preferably finite dimensional spaces) and
represent the limit distributions in more familiar forms.

We utilize the Karhunen-Loeve expansion for H-valued random
elements:

Xt = EXt +

∞∑
i=1

Ztivi

where Zti is an array of real valued random variables such that
EZ2

ti = λi and EZtiZtj = 0 for i 6= j. Note that
〈Xt − EXt, vi〉 = Zti.

We next state a representation theorem corresponding to Theorem
5. Representation results for other theorems can be obtained
similarly using algebraic rules of tensors introduced earlier.



Representation

Theorem 10
Under the assumptions of Theorem 5, we have the followings.

1. 〈Uvi, vi〉 =d N(0, LRV (Z2
ti)).

2. 〈QiUvi, v〉 =d N
(

0, LRV
(∑

j 6=i
ZtiZtj〈vj ,v〉

λi−λj

))
for any v ∈ H. In

particular, 〈QiUvi, vj〉 =d N
(

0,
ZtiZtj

λi−λj

)
if j 6= i, and 〈QiUvi, vj〉 is

degenerate if j = i.

3. For any u, v ∈ H,
〈
(PiUQi +QiUPi)v, u

〉
=d

N
(

0, LRV

(∑
j 6=i

ZtiZtj

(
〈vi,v〉〈vj ,u〉+〈vj ,v〉〈vi,u〉

)
λi−λj

))
. In particular,〈

(PiUQi +QiUPi)vj , vk
〉

=d N
(

0, LRV
(
ZtiZtk

λi−λk

))
if j = i, k 6= i,〈

(PiUQi +QiUPi)vj , vk
〉

=d N
(

0, LRV
(
ZtiZtj

λi−λj

))
if j 6= i, k = i,

and
〈
(PiUQi +QiUPi)vj , vk

〉
is degenerate for other combinations

of j and k.

The convergences also hold jointly.



Determining Truncation Parameters

As an application of our results, we propose a test to determine
the truncation parameter in FPCA analysis

A frequently used criterion in selecting the truncation parameter is
to choose K so that the first K principal components explain more
than a θ proportion of total variation.

We therefore propose a sequence of one tailed test with null

H0 :

∑K
i=1 λi∑∞
i=1 λi

= θ

against the alternative

H1 :

∑K
i=1 λi∑∞
i=1 λi

< θ



Determining Truncation Parameters

The test is based on the statistic

T̃θ(K) =
√
T

(∑K
i=1 λ̂i∑∞
i=1 λ̂i

− θ

)
.

Suppose Assumptions 1, 2 and 6 hold. Under the null we have

T̃θ(K)→d N

(
0,

1

(
∑∞

i=1 λ)2
LRV

(
(1− θ)

k∑
i=1

Z2
ti − θ

∞∑
i=k+1

Z2
ti

))
where Zti = 〈Xt − EXt, vi〉. A feasible version of the test is

Tθ(K) =

√
T
(∑

i≤k λ̂i − θ
∑∞

i=1 λ̂i

)
√
L̂RV

(
(1− θ)

∑k
i=1 Ẑ

2
ti − θ

∑∞
i=k+1 Ẑ

2
ti

)
where L̂RV is any consistent estimator of the long run variance.
We have that under the null hypothesis, Tθ(K)→d N(0, 1).



Determining Truncation Parameters

The estimation of K is based on the sequential test (at a
significance level of α) procedure as follows. Let Φ−1(α) be the
α-quantile of the standard normal distribution.

1. Start from a large enough integer n

2. Conduct the test

◦ If Tθ(n) > Φ−1(α), we fail to reject null. We then replace n
with n− 1 and reconduct the test.

◦ If Tθ(n) ≤ Φ−1(α), we reject the null, and stop.

3. Set K̂ = n+ 1.

We have that under Assumptions 1, 2 and 6, K̂ converges in
probability to the true value.



Simulations

We simulate a strictly stationary series Xt where

� Xt =d
∑∞

i=1 Ztivi

� vi(x) =
√

2 cos(iπx) defined on [0, 1]

� each Zti, in terms of t is an individual AR(1) process with
autoregressive coefficient 1/2 and variance i−3

� the error term in the AR(1) processes are iid normal

� λi = i−r,
∑∞

i=1 λi =
∑∞

i=1 i
−r = ζ(r) where ζ(·) is the

Riemann’s zeta function.

� θ = 0.95 which corresponds to K = 3.

� in estimating the long run variance we use the Bartlett kernel
with Newey-West optimal bandwidth

� for each exercise we simulate 1000 samples

We use the test procedure above to select K. We try different
combinations of sample size T and the number N of basis
functions used in representing functions.



Simulations

exact θ θ = 0.95 θ = 0.95
K = 3 K = 3 K = 2

T = 200 0.062 0.000 0.661
T = 300 0.073 0.000 0.804
T = 500 0.052 0.000 0.923
T = 1000 0.049 0.000 0.998

Table: Rejection Ratio



Conclusions

Obtain asymptotic distributions of spectral-related quantities in
weakly dependent data setting in a unified approach

� eigen-elements in FPCA

� regularized estimators in ill-posed inverse problems

� singular value decomposition for non-self adjoint operators

� spectral decomposition for non-self adjoint operators

Issues that can be explored using our results

� non-linear FPCA

� Inference of general FAR process

� Order selection of FMA models

� Optimal truncation parameter selection in FAR models

� ...


