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Abstract

This paper studies the error correction model for functional time series with unit
roots, which generalizes the vector error correction model for finite dimensional
time series with unit roots. We unravel two important facts on the functional
error correction model. First, any functional time series generated by an error
correction model with a compact error correction operator has infinite dimen-
sional unit roots. Second, the Granger’s representation theorem continues to
hold for the functional time series with unit roots in a form essentially identical
to that for the finite dimensional error correction model.
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1 Introduction

The error correction model (ECM) has been widely used to analyze economic time series

with common stochastic trends since the publication of the seminal papers by Granger

(1981) and Engle and Granger (1987). In their analysis of a system of multiple economic

time series, individual economic time series with stochastic trends are characterized as unit

root processes, and the presence of common stochastic trends is interpreted as a consequence

of cointegration representing longrun economic equilibria and reducing the number of unit

roots in the system. In his study on the statistical inference of VARs with unit roots and

cointegration, Johansen (1991) more formally derives the so-called Granger’s representation

theorem, which relates the ECM for time series with unit roots to its infinite order moving

average representation in difference.

In this paper, we study the ECM of functional time series with unit roots, which will

be referred to as the functional ECM. It was also studied recently by Beare and Seo (2015),

which takes a quite different approach from ours as will be explained below. A functional

time series is a time series of random elements taking values in an infinite dimensional

Hilbert space of functions. See the monograph by Bosq (2000) for more detailed discussions

on functional time series, and Kargin and Onatski (2008), Park and Qian (2012) and Hu

et al. (2016) for their applications in forecasting and econometrics. Recently, Chang et al.

(2016b) and Chang et al. (2016a) show that it is quite common to observe the presence of

unit roots in functional time series data. In fact, they find some strong evidence of unit

roots in many different functional time series data. Therefore, a question naturally arises

whether the ECM is meaningfully defined and the Granger’s representation theorem holds

for the functional time series with unit roots.

In the functional ECM, the error correction term is specified by an operator, which we

call the error correction operator. In this paper, we show that all compact error correction

operators are necessarily of finite-rank. This implies that the unit root dimension of any

functional time series generated by the ECM with a compact operator is infinite dimensional.

No functional time series with finite dimensional unit roots may be generated through an

ECM with a compact operator, or equivalently, no functional time series driven by a finite

number of unit root processes allows for an ECM with a compact operator. A linear

operator in a Hilbert space is compact if and only if it is the limit of a sequence of finite-

rank operators, and therefore, we may approximate a linear operator in a Hilbert space

with a finite dimensional matrix in any meaningful sense if and only if it is compact.

The functional ECM with a finite dimensional error correction operator and infinite

dimensional unit roots is well defined and can be analyzed similarly as the ECM for finite
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dimensional time series. In particular, we demonstrate that the Granger’s representation

is possible for such a functional ECM and can be obtained analogously as in the finite

dimensional case.

Our model and approach in the paper are different from those of Beare and Seo (2015)

in two important aspects. While we mainly consider the functional ECM with a compact

error correction operator, they derive their main theorem assuming that the error correction

operator in their model has infinite dimensional range and therefore non-compact. More-

over, our assumptions and conclusions are contrastingly different from theirs. We impose

an appropriate set of assumptions on the functional time series generated by a functional

ECM to derive its infinite order moving average representation in difference, following the

conventional approach to establish the Granger’s representation theorem as in Johansen

(1991, 1995) and Hansen (2005). On the other hand, Beare and Seo (2015) assume that the

functional time series generated by a functional ECM has an infinite order moving average

representation in difference and, under this assumption, they derive the restrictions on its

longrun impact operator implied by the error correction operator.

2 Main Results

We denote by (ft) a functional time series, where ft for each t = 1, 2, . . . is a random element

taking values in a separable Hilbert space H, and let (ft) be generated as

∆ft = Λft−1 +

p∑
k=1

Γk∆ft−k + εt (1)

where ∆ is the usual difference operator, (εt) is a functional white noise, and Λ and Γk’s

are linear operators on H. Clearly, our model in (1) can be rewritten as

A(L)ft = εt,

where L is the lag operator and

A(z) = A(1) + (1− z)A∆(z)

with

A(1) = −Λ and A∆(z) = I + Λ−
p∑

k=1

Γkz
k.
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The model in (1) extends the ECM for finite dimensional time series. Therefore, it will be

referred to as the functional ECM. The error correction term of the functional ECM in (1)

is given by the error correction operator Λ.

We assume that

Assumption 1 Λ is compact.

Assumption 2 There exists ε > 0 such that A(z) is invertible for all |z| ≤ 1 + ε and

z 6= 1.

Assumption 1 is not stringent. It is well known that a linear operator on a Hilbert space is

compact if and only if it is given as the limit of a sequence of finite-rank operators. Therefore,

we may approximate a linear operator on a Hilbert space with a finite dimensional matrix

in any meaningful sense if and only if it is compact. Assumption 2 is necessary to ensure

that the nonstationarity of (ft) can be removed by differencing. It is also made in Johansen

(1991, 1995) for his study on the finite dimensional ECM.

The following lemma gives a necessary condition for a functional time series (ft) gener-

ated by the ECM in (1) to be integrated of order 1.

Lemma 1 Let Assumptions 1 and 2 hold. If (ft) is I(1), then Λ has finite rank.

Proof of Lemma 1 To prove Lemma 1, note that, for |z| ≤ 1 + ε and z 6= 1, we have

A−1(z) =
1

z

[
1− z
z

(
I −

p∑
k=1

Γkz
k

)
− Λ

]−1

.

For (ft) to be I(1), A−1(z) must have a simple pole at 1, which holds if and only if the

generalized resolvent [
λ

(
I −

p∑
k=1

Γk

)
− Λ

]−1

has a simple pole at 0. It follows from Theorem 4.2 and the remarks on page 164 of Bart

and Lay (1974) that this happens only if we can decompose H as

H = R(Λ)⊕

(
I −

p∑
k=1

Γk

)
N (Λ)

where R(Λ) is closed. By Theorem 4.18 of Rudin (1991), as a compact operator, Λ must

be of finite rank . �
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Lemma 1 implies that if the error correction operator is compact and has infinite di-

mensional range space, then (ft) can not be integrated of order one. We therefore assume

that Λ has finite rank and write

Λ =

m∑
i=1

λi(ui ⊗ vi) (2)

with λi 6= 0 for i = 1, . . . ,m, where (ui) and (vi) are orthonormal bases of H and ⊗ is the

tensor product on H. Subsequently, we let

Um =

m∨
i=1

ui and U⊥m =

∞∨
i=m+1

ui,

and similarly,

Vm =
m∨
i=1

vi and V ⊥m =
∞∨

i=m+1

vi,

where
∨

denotes (the closure of) the linear span of a set of functions in H. Furthermore,

we define

Pm =
m∑
i=1

(ui ⊗ ui) and P⊥m =
∞∑

i=m+1

(ui ⊗ ui),

and

Qm =

m∑
i=1

(vi ⊗ vi) and Q⊥m =

∞∑
i=m+1

(vi ⊗ vi),

so that Pm and P⊥m are projections on Um and U⊥m, and Qm and Q⊥m are projections on Vm

and V ⊥m , respectively. Finally, we denote by 〈·, ·〉 the inner product defined on H.

To derive the Granger’s representation theorem, we need to introduce an additional

assumption.

Assumption 3 The linear operator Φ = P⊥mA∆(1)Q⊥m is invertible as a map from V ⊥m to

U⊥m.

Assumption 3 reduces to the condition in the Granger’s representation theorem of Johansen

(1991, 1995) where H is finite dimensional. It turns out that Assumption 3, together with

that Λ has finite rank, is sufficient for the functional time series (ft) to be I(1). If we write

Φ =

∞∑
i=m+1

∞∑
j=m+1

aij(ui ⊗ vj),
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the invertibility of Φ in Assumption 3 implies the existence of the linear operator

Ψ =

∞∑
i=m+1

∞∑
j=m+1

bij(vi ⊗ uj) (3)

such that

ΦΨ = 1 and ΨΦ = 1

respectively on U⊥m and V ⊥m , from which it follows, in particular, that

Um ∩ V ⊥m = {0} and U⊥m ∩ Vm = {0}.

Under Assumption 3, Vm becomes the cointegrating space, as will be shown subsequently.

Therefore, for any v ∈ Vm,
(
〈v, ft〉

)
is a stationary time series. However, if v ∈ U⊥m,

then 〈v,∆ft〉 = 〈v, εt〉 and (〈v, ft〉) becomes a unit root process. This is the reason why

U⊥m ∩ Vm = {0}. We may similarly explain why we should have Um ∩ V ⊥m = {0}.

Theorem 2 Let Assumptions 1, 2 and 3 hold. Then we may write

∆ft = Ψεt + ∆gt,

where

gt =

∞∑
k=0

Πkεt−k

and Πk’s are absolutely summable in the operator norm.

Proof of Theorem 2 Define

C(z) = A(z)

(
Qm +

1

1− z
Q⊥m

)
=
(
− Λ + (1− z)A∆(z)

)(
Qm +

1

1− z
Q⊥m

)
=
(
− Λ + (1− z)PmA∆(z)Qm

)
+ (1− z)P⊥mA∆(z)Qm + PmA∆(z)Q⊥m + P⊥mA∆(z)Q⊥m.

It follows that

C(1) = −Λ + PmA∆(1)Q⊥m + P⊥mA∆(1)Q⊥m,
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which is invertible as a mapping from V ⊥m to U⊥m under Assumption 3, and we have

C−1(1) = −

(
m∑
i=1

1

λi
(vi ⊗ ui)

)(
1−A∆(1)Ψ

)
+ Ψ

upon noticing that Φ = P⊥mA∆(1)Q⊥m. In particular, under both Assumptions 1 and 2,

C−1(z) is analytic for |z| < 1.

However, for |z| ≤ 1 and z 6= 1, it follows that

A−1(z) =

(
Qm +

1

1− z
Q⊥m

)
C−1(z).

Therefore, if we let

B(z) = (1− z)A−1(z) =
(

(1− z)Qm +Q⊥m

)
C−1(z),

then B(z) is analytic for |z| < 1 under Assumptions 2 and 3, and we may easily deduce

that

B(1) = Ψ,

and that

B(z)−B(1) = (1− z)
(
QmC

−1(z) +Q⊥mC
−1
∆ (z)

)
,

where

C−1
∆ =

C−1(z)− C−1(1)

1− z
,

which is analytic for |z| < 1. The stated result now follows readily from

∆ft = B(L)εt =
[
B(1) + (1− L)

(
QmC

−1(L) +Q⊥mC
−1
∆ (L)

)]
εt,

and the proof is complete. �

Theorem 2 is completely analogous to the Granger’s representation theorem in Johansen

(1991, 1995). In fact, it is straightforward to show that Theorem 2 reduces to Theorem 4.1

in Johansen (1991) if H is finite dimensional. It follows, in particular, from Theorem 2,

together with the definitions of Λ and Ψ respectively in (2) and (3), that

ΛΨ = ΨΛ = 0,
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which is the essence of the Granger’s representation theorem. If we set f0 = g0, then

ft = Ψ
t∑

k=1

εk + gt

for all t = 1, 2, . . .. For all v ∈ Vm, we have

〈v, ft〉 = 〈v, gt〉

and therefore
(
〈v, ft〉

)
is stationary. On the other hand, for all v ∈ V ⊥m , we have

〈v, ft〉 =

〈
v,Ψ

t∑
k=1

εk

〉
+ 〈v, gt〉 =

〈
Ψ∗v,

t∑
k=1

εk

〉
+ 〈v, gt〉,

where Ψ∗ is the adjoint operator of Ψ and we have Ψ∗v 6= 0 for any v ∈ V ⊥m under Assump-

tion 3, which implies that
(
〈v, ft〉

)
is a unit root process. Therefore, Vm is the cointegrating

subspace of H. In particular, we have a finite dimensional cointegrating space and infinite

dimensional unit roots, if (ft) is defined in an infinite dimensional Hilbert space H.

3 Concluding Remark

We show that the functional ECM with a compact error correction operator necessarily

has a finite-rank error correction term and infinite dimensional unit roots. Moreover, we

establish the Granger’s representation theorem for the functional time series with unit roots

analogously as for the finite dimensional ECM. Our assumptions are minimal, and reduce

to the standard conditions imposed for the finite dimensional ECM where the underlying

functional time series become degenerate and finite dimensional.
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